Для вычисления полной поверхности цилиндра нужно найти его радиус. Квадраты в сечении будут равными, поскольку одна их сторана равна высоте цилиндра, т.е. 5 см. Радиус можно найти начертив основание, построить угол 120 градусов, вершина которога лежит на окружности, так как плоскости проходят через образующую, а стороны равны как стороны квадратов, провести радиусы и доказать, что полусается равносторонний треугольник. Но можно и по другому. Известно, что в окружность можно вписать правильный шестиугольник, сторона которого равна радиусу окружности, а углы 120 градусов. Проверим 6 * 120 = 720 - сумма углов такого шестиугольника. И то что это действительно шестиугольник можно проверить по формуле суммы углов многоугольника 180 * (n - 2) = 180 * (6 - 2) = 720. Значит стороны квадратов на основании являются сторонами правильного шестиугольника, вписанного в окружность и равны радиусу. S = 2 * П * R * Н = 2 * П * 5 * 5 = 50П см^2 ответ: 50П см^2Для нахождения радиуса выбирай любой из предложенных Просто без чертежа сложно объяснять.
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
Квадраты в сечении будут равными, поскольку одна их сторана равна высоте цилиндра, т.е. 5 см.
Радиус можно найти начертив основание, построить угол 120 градусов, вершина которога лежит на окружности, так как плоскости проходят через образующую, а стороны равны как стороны квадратов, провести радиусы и доказать, что полусается равносторонний треугольник. Но можно и по другому.
Известно, что в окружность можно вписать правильный шестиугольник, сторона которого равна радиусу окружности, а углы 120 градусов.
Проверим 6 * 120 = 720 - сумма углов такого шестиугольника.
И то что это действительно шестиугольник можно проверить по формуле суммы углов многоугольника 180 * (n - 2) = 180 * (6 - 2) = 720.
Значит стороны квадратов на основании являются сторонами правильного шестиугольника, вписанного в окружность и равны радиусу.
S = 2 * П * R * Н = 2 * П * 5 * 5 = 50П см^2
ответ: 50П см^2Для нахождения радиуса выбирай любой из предложенных Просто без чертежа сложно объяснять.
Высота трапеции Н=2h, где h - высота каждой меньшей трапеции.
ВС=а, АД=b
МК - средняя линия исходной трапеции и равна (а+b):2
МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК
S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований:
S1=h*(ВС+МК):2
S1=h*{а+(а+b):2}:2)=h*(3a+b):4
S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований:
S2=h*(AD+МК):2
S2=h*{b+(b+a):2}:2=h*(a+3b):4
Разность между площадями этих трапеций
S2-S1=h*(a+3b):4-h*(3a+b):4=
=(ha+3hb-3ha-hb):4=2h(b-a):4
2h=H
S2-S1=H(b-a):4