1) Опустим из А высоту АН. АН=АВ*sin 60º=2√3BH=AB*sin30º=2 HC=BC-BH=6-2=4 По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7 Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH 6:2√7=BD:2√3 BD=12√3:2√7=(6√3):√7 или (6√21):7 ------------- 2) Найдем АС как в первом решении. Площадь треугольника АВС S=AC*BD:2 S=AH*BC:2 Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения: AC*BD:2=AH*BC:2 (2√7)*BD:2=(2√3)*6:2 BD=(12√3):(2√7)=(6√3):√7 или (6√21):7 -- АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
HC=BC-BH=6-2=4
По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7
Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH
6:2√7=BD:2√3
BD=12√3:2√7=(6√3):√7 или (6√21):7
-------------
2) Найдем АС как в первом решении.
Площадь треугольника АВС
S=AC*BD:2
S=AH*BC:2
Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения:
AC*BD:2=AH*BC:2
(2√7)*BD:2=(2√3)*6:2
BD=(12√3):(2√7)=(6√3):√7 или (6√21):7
--
АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
Думаю, Вы без труда справились бы с задачами самостоятельно, если бы сделали рисунки к ним.
Трапеция :
Треугольник примыкает к стороне АВ. Его сторона ВЕ=СД
Значит, от периметра трапеции периметр треугольника отличается на длину двух ВС ( в параллелограмме ВСДЕ - ЕД=ВС)
Периметр трапеции равен 12+6·2=24 см (длина АЕ дана, видимо, чтобы слегка запутать)
Ромб, в котором тупой угол равен 120 градусам, "составлен" из двух равносторонних треугольников. Меньшая диагональ в нем равна стороне ромба. ⇒
Сторона ромба 8 см, периметр 4·8=32 см