Начнем с того, что вспомним: в трапецию можно вписать окружность тогда и только тогда, когда суммы ее противоположных сторон равны. Следовательно, сумма ее боковых сторон равна 2+8=10, а
каждая боковая сторона равна 5 см.
Угол наклона боковых граней пирамиды к плоскости основания образован радиусом окружности основания конуса и высотой треугольников - боковых граней пирамиды.
Нам необходимо знать диаметр основания конуса, который в то же время является высотой трапеции. Опустив высоту к большему основанию из вершины В трапеции, получим прямоугольный треугольник с гипотенузой 5 см и катетами один =3 см (полуразность оснований) и второй - высота трапеции h= D основания конуса h²=25-9=16 D=h=√16=4 см r=2см Для нахождения высоты конуса ( и пирамиды) применим формулу объёма конуса V= ⅓ S H= ⅓ π r² H Объём конуса по условию равен ( 8п√3):3 см ⅓ π4 H=( 8п√3):3 4 π H:3=( 8п√3):3 4 H = 8 √3 Н=2√3 см РО=Н=2√3
Повторюсь: Угол наклона боковых граней пирамиды к плоскости основанияобразован радиусом окружности основания конуса и высотойтреугольников - боковых граней пирамиды. РМ=РК=РН=√(РО²+ОМ²)=√(12+4)=4 см ОК=ОМ=r=2 см Если в прямоугольном треугольнике, какими, без сомнения, являются треугольники КОР и МОР, катет равен половине гипотенузы, то он противолежит углу 30°, а второй острый угол в таком треугольнике равен 60°.
То, что диаметр основания конуса равен его образующей, подтверждает найденное решение. ответ:
Пирамида правильная, так как все ее ребра равны. Вершина правильной пирамиды S проецируется в центр О основания. В правильном треугольнике (основании пирамиды) его высота равна (√3/2)*а, где а - сторона (здесь и далее - ребро пирамиды). В правильном треугольнике высота является и медианой, а медианы центром О делятся в отношении 2:1, считая от вершины. Значит ОВ=(2/3)* (√3/2)*а= (√3/3)*а. Тогда по Пифагору SO=√(SB²-BO²) или SO=(√6/3)*а. Площадь основания (правильного треугольника) равна So=(√3/4)*а². Тогда объем пирамиды V=(1/3)*So*h или V=(1/3)*(√3/4)*а²*(√6/3)*а=(√2/12)а³. В нашем случае этот объем равен "b". Тогда а³=b*6√2. Ребро пирамиды равно а=∛(b*6√2). ответ: а=∛(b*6√2).
Начнем с того, что вспомним: в трапецию можно вписать окружность тогда и только тогда, когда суммы ее противоположных сторон равны.
Следовательно, сумма ее боковых сторон равна 2+8=10, а
каждая боковая сторона равна 5 см.
Угол наклона боковых граней пирамиды к плоскости основания образован радиусом окружности основания конуса и высотой треугольников - боковых граней пирамиды.
Нам необходимо знать диаметр основания конуса, который в то же время является высотой трапеции.
Опустив высоту к большему основанию из вершины В трапеции, получим прямоугольный треугольник с гипотенузой 5 см и катетами
один =3 см (полуразность оснований) и
второй - высота трапеции
h= D основания конуса
h²=25-9=16
D=h=√16=4 см
r=2см
Для нахождения высоты конуса ( и пирамиды) применим формулу объёма конуса
V= ⅓ S H= ⅓ π r² H
Объём конуса по условию равен ( 8п√3):3 см
⅓ π4 H=( 8п√3):3
4 π H:3=( 8п√3):3
4 H = 8 √3
Н=2√3 см
РО=Н=2√3
Повторюсь:
Угол наклона боковых граней пирамиды к плоскости основанияобразован радиусом окружности основания конуса и высотойтреугольников - боковых граней пирамиды.
РМ=РК=РН=√(РО²+ОМ²)=√(12+4)=4 см
ОК=ОМ=r=2 см
Если в прямоугольном треугольнике, какими, без сомнения, являются треугольники КОР и МОР, катет равен половине гипотенузы, то он противолежит углу 30°, а второй острый угол в таком треугольнике равен 60°.
То, что диаметр основания конуса равен его образующей, подтверждает найденное решение.
ответ:
искомый угол равен 60°.
Вершина правильной пирамиды S проецируется в центр О основания.
В правильном треугольнике (основании пирамиды) его высота равна (√3/2)*а, где а - сторона (здесь и далее - ребро пирамиды).
В правильном треугольнике высота является и медианой, а медианы центром О делятся в отношении 2:1, считая от вершины.
Значит ОВ=(2/3)* (√3/2)*а= (√3/3)*а.
Тогда по Пифагору SO=√(SB²-BO²) или SO=(√6/3)*а.
Площадь основания (правильного треугольника) равна So=(√3/4)*а².
Тогда объем пирамиды V=(1/3)*So*h или
V=(1/3)*(√3/4)*а²*(√6/3)*а=(√2/12)а³.
В нашем случае этот объем равен "b".
Тогда а³=b*6√2. Ребро пирамиды равно а=∛(b*6√2).
ответ: а=∛(b*6√2).