Дан куб ABCDA¹B¹C¹D¹. 1) Назовите пары ребер куба, лежащих на: а) пересекающихся, б) скрещивающихся, в) параллельных прямых.
2) Каково взаимное расположение прямых: а) (B¹D) и (BC), б) (АВ) и (DD¹), в) (B¹D) и (A¹C¹) и (АС), д) (А¹С¹) и (ВD)?
3) Найдите угол между прямыми: А) (А¹С) и (BD), б) (А¹В¹) и (СD), в) (С¹D¹) и (AD), г) (А¹С) и (В¹D), д) (А¹С) и (А¹С¹).
Объяснение: Третий угол прямоугольного треугольника=180-(90+45)=45, значит это равнобедренный прямоугольный треугольник и медиана будет также являться биссектрисой т е треугольник образованный этой медианой (биссектр.) будет равнобедренным т к биссектриса делит угол в 90 пополам. Этот треугольник будет равнобедренным и его боковые стороны(медиана и половина гипотенузы) будут равны (4см). Т к медиана делт сторону пополам и мы знаем половину стороны, то длина гипотенузы=8см
уголВ=углуС= 180-(90+45)=45, значит АВ=АС=4см
АD-биссектриса,мадиана, высота, значит угол DAC=DCA=45 т е AD=DC=4см
BD=DC=4см, значит ВС=8
Объяснение: Рисуем треугольник АВС. Угол А - прямой.
Проводим высоту АК на сторону СВ.
ВК = 6 см
КС = 2 см
Составляем уравнения теоремы Пифагора
АК^2 = AC^2 - KC^2
или
АК^2 = AC^2 - 4 [уравнение 1]
AK^2 = AB^2 - BK^2
или
AK^2 = AB^2 - 36 [уравнение 2]
AB^2 + AC^2 = BC^2
или
AB^2 + AC^2 = 64 [уравнение 3]
Складываем уравнени [1] и [2]
2 * АК^2 = AC^2 + AB^2 - 40
Вместо суммы квадратов катетов подставляем значение квадрвта гипотенузы из уравнения 3
2 * АК^2 = 64 - 40
АК^2 = 12
Находим катет АС
АС^2 = AK^2 + KC^2 =
AC^2=12 + 4 = 16
AC = 4 см
sin В = АС/СВ = 4/8 = 1/2
В = 30 гр
С = 60 град
Подробнее - на -