Биссектриса "разрезает" треугольник на два. Условно назвав их "левый" и "правый", легко видеть что в подобных треугольниках "сходственные" биссектрисы порождают две пары подобных треугольников. "Левый" из разрезанных подобен "левому", а "правый" - "правому". В самом деле, например, у "левых" треугольников есть по равному углу, оставшемуся от исходного, и равны углы, одной из сторон которых являются биссектрисы. То есть подобие по признаку равенства двух углов.
Кроме того, у "левых" треугольников одной из сторон является сторона исходного треугольника, а другой - биссектриса. Что автоматически означает их пропорциональность, то есть биссектрисы относятся так же как боковые стороны (и не важно, какая пара "сходственных" сторон - вполне достаточно показать для любой, раз они все пропорциональны с коэффициентом подобия).
пусть середина стороны АВ т. К
пересечением пл. (альфа) и пл. треугольника (АВС) является прямая k
прямая k параллельна стороне ВС
в противном случае, она должна пересечь прямую(ВС)
НО точка пересечения должна принадлежать также пл. (альфа)
а это НЕВОЗМОЖНО -
пл. (альфа) и ВС не имеют точек пересечения - по условию они параллельны
значит прямая k ПАРАЛЛЕЛЬНА ВС
прямая k является секущей сторон АВ и АС и делит их на пропорциональные отрезки
отсюда следует , что прямая k и плоскость альфа проходит также через середину стороны АС.
отрезок прямой k (между сторонами АВ и АС)- это средняя линия треугольника АВС
Биссектриса "разрезает" треугольник на два. Условно назвав их "левый" и "правый", легко видеть что в подобных треугольниках "сходственные" биссектрисы порождают две пары подобных треугольников. "Левый" из разрезанных подобен "левому", а "правый" - "правому". В самом деле, например, у "левых" треугольников есть по равному углу, оставшемуся от исходного, и равны углы, одной из сторон которых являются биссектрисы. То есть подобие по признаку равенства двух углов.
Кроме того, у "левых" треугольников одной из сторон является сторона исходного треугольника, а другой - биссектриса. Что автоматически означает их пропорциональность, то есть биссектрисы относятся так же как боковые стороны (и не важно, какая пара "сходственных" сторон - вполне достаточно показать для любой, раз они все пропорциональны с коэффициентом подобия).
Это все.