Дан прямоугольник mnkl. Из угла m построили биссектрису так, что она пересекает сторону NK в точке Q. Отрезок QL в два раза больше отрезка KL. Чему равен угол MQL?
Высота прямоугольного треугольника разделила исходный треугольник на два других маленьких прямоугольных треугольника. Сначала найдем на какие углы высота разбила прямой угол. Пусть меньший из них - х, тогда больший (х + 40). Получим уравнение: х + х + 40 = 90; 2х = 50; х = 25 - первая часть прямого угла; 25 + 40 = 65 - вторая часть. Т. о. в полученных прямоугольных треугольниках о острые углы равны 25 и 65, а вторые острые углы маленьких треугольников являются искомыми углами исходного треугольника: 25 и 65. ответ: 25 и 65.
1 тому ВМ медіана, то АМ = МС. ВМ загальна.
Одна з формул площі тр: половина твори сторін на синус кута між ними.
Площа трикутника АВМ = АМ * ВМ * sinАМВ (1)
Площа трикутника ВМС = СМ * ВМ * sinСМВ (2)
кут АМВ + кут СМВ = 180
АМВ = 180 - СМВ => sin (AMB) = sin (180-СMВ) => за формулою приведення => sin (180-СМВ) = sin (СMВ)
т.к АМ = СМ, ВМ - загальна і sin (АМВ) = sin (СMВ) вираження (1) і (2) рівні
2 * АМ * ВМ * sinАМВ = 24
АМ * ВМ * sinАМВ = 12
площа АМВ = 12 см ^ 2
2 Оскільки AB = BC, то треуг ABC рівнобедрений, а значить висота BD проведена до основи є медіаною і бісссектрісой => AD = DC & кути ABD = DBC
У прямокутному трикутнику ADB по теоремі пифагора BD = 12
Площа АВС дорівнює половині твори підстави на висоту 0,5 * 18 * 12 = 108
Объяснение: