У тебя есть пирамида с вершиной M и основанием ABCD.
Для начала проводим вершину (MO, где О- центр четырехугольника); эта высоты делит диагонали 4-ехугольника пополам (АО=ОС, BO=OD).
Перенесем теперь прямую DM в плоскости DMB ровно на половину диагонали ABCD параллельно ее предыдущему положению.
Теперь прямая DM стала прямой OL.
Прямые AL и OL пересекаются теперь в точке L.
Получился треугольник AOL , где угол AOL равен 90 градусов (доказывать долго просто поверь), а угол OAL равен 30 градусов, так как другой угол (угол OLA) равен 60 градусов по условию задачи.
Половина диагонали четырехугольника равна 3 корней из 2.
Другой катет (первый катет это половина диагонали четырехугольника) равен предыдущему катету умноженному на тангенс 60 градусов:
AO=OL*tg60град
Отсюда,
OL=3корня из 2/корень 3= корень из 6
MD=2OL, так как OL- средняя линия треугольника DBM, следовательно, MD= 2 корней из 6.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=3√2), боковые ребра SА=SВ=SС=SД=5. Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO- это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани (равнобедренного ΔSАВ), она же и медиана, и биссектриса.
Попробую объяснить без чертежа.
У тебя есть пирамида с вершиной M и основанием ABCD.
Для начала проводим вершину (MO, где О- центр четырехугольника); эта высоты делит диагонали 4-ехугольника пополам (АО=ОС, BO=OD).
Перенесем теперь прямую DM в плоскости DMB ровно на половину диагонали ABCD параллельно ее предыдущему положению.
Теперь прямая DM стала прямой OL.
Прямые AL и OL пересекаются теперь в точке L.
Получился треугольник AOL , где угол AOL равен 90 градусов (доказывать долго просто поверь), а угол OAL равен 30 градусов, так как другой угол (угол OLA) равен 60 градусов по условию задачи.
Половина диагонали четырехугольника равна 3 корней из 2.
Другой катет (первый катет это половина диагонали четырехугольника) равен предыдущему катету умноженному на тангенс 60 градусов:
AO=OL*tg60град
Отсюда,
OL=3корня из 2/корень 3= корень из 6
MD=2OL, так как OL- средняя линия треугольника DBM, следовательно, MD= 2 корней из 6.
По теореме Пифагора находишь высоту пирамиды:
OM^2= DM^2-OD^2
OM^2=24-18=6
OM=корень из 6
ответ: корень из 6.
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=3√2), боковые ребра SА=SВ=SС=SД=5. Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO- это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани (равнобедренного ΔSАВ), она же и медиана, и биссектриса.
SК=√(SA²-AK²)=√(5²-(3√2/2)²)=√(25-4,5)=√20,5
Из прямоугольного ΔSKО:
SО=√(SК²-OK²)=√((√20,5)²-(3√2/2)²)=√20,5-4,5=√16=4
Площадь основания Sосн=АВ²=3√2²=18
Периметр основания Р=4АВ=4*3√2=12√2
Площадь боковой поверхности
Sбок=P*SK/2=12√2*√20,5 /2=6√41
Площадь полной поверхности
Sполн=Sбок+Sосн=6√41+18
Объем
V=Sосн*SO/3=18*4/3=24
Подробнее - на -