Площадь боковой поверхности цилиндра равна периметру основания, умноженного на высоту, то есть S = 2*pi*R*H. R = AO = OB, H = OO1. S = 2*pi*R*OO1. Рассмотрим нижнее основание - окружность с центром О: дуга АВ равна бета, центральный угол равен радианной или градусной мере дуги, на которую опирается, а поскольку дуга АВ = бета, следовательно, центральный угол АОВ = бета. С этих пор обозначим угол альфа - α, бета - β. Из равнобедренного треугольника АОВ (поскольку АО = ВО - радиусы) <OAB = <OBA = (180-β)/2 = 90 - β/2. По теореме синусов: AB/sin(β) = R/sin(90-β/2), из таблицы формул приведения аргумента имеем: sin(pi/2-р) = cos(р), поскольку pi/2 = 90 градусов, а угол р = β/2, имеем: AB/sin(β) = R/cos(β/2), AB = (R*sin(β))/cos(β/2). Найдем теперь высоту OK: OK^2 = OB^2 - (BK)^2, OK^2 = OB^2 - (AB/2)^2, OK^2 = R^2 - ((R*sin(β))/2cos(β/2))^2. Рассмотрим треугольник ABO1: AO1 = BO1, следовательно треугольник ABO1 равнобедренный, а следовательно, <O1AB = < O1BA = (180 - α)/2 = 90 - α/2. Аналогично предыдущему, по теореме синусов: AB/sin(α) = AO1/sin(90-α/2), sin(90-α/2) = cos(α/2). Имеем: AO1 = (AB*cos(α/2))/sin(α) = (R*sin(β)*cos(α/2))/sin(α)*cos(β/2). Рассмотрим прямоугольный треугольник я это лучше распишу на картинке. И площадь боковой поверхности тоже.
Около трапеции описана окружность, следовательно трапеция равнобедренная (т.к. сумма противолежащих углов равна 180). Биссектрисы углов при основании образуют равнобедренный треугольник (половины равных углов равны). Радиус вписанной окружности делит основание пополам (т.к. является высотой и медианой). Отрезки касательных, проведенных из одной точки, равны. Таким образом, искомый пятиугольник разделен на четыре равных (по двум катетам) прямоугольных треугольника.
S= 4*(a/2)r/2 =ar
Биссектрисы углов при боковой стороне перпендикулярны (т.к. сумма односторонних углов при параллельных равна 180). Радиус к боковой стороне является высотой из прямого угла и равен среднему пропорциональному проекций катетов.
Рассмотрим прямоугольный треугольник я это лучше распишу на картинке. И площадь боковой поверхности тоже.
Около трапеции описана окружность, следовательно трапеция равнобедренная (т.к. сумма противолежащих углов равна 180). Биссектрисы углов при основании образуют равнобедренный треугольник (половины равных углов равны). Радиус вписанной окружности делит основание пополам (т.к. является высотой и медианой). Отрезки касательных, проведенных из одной точки, равны. Таким образом, искомый пятиугольник разделен на четыре равных (по двум катетам) прямоугольных треугольника.
S= 4*(a/2)r/2 =ar
Биссектрисы углов при боковой стороне перпендикулярны (т.к. сумма односторонних углов при параллельных равна 180). Радиус к боковой стороне является высотой из прямого угла и равен среднему пропорциональному проекций катетов.
r= √(a/2*b/2) =√(ab)/2
S= a√(ab)/2 =3√15/2