Треугольник ABC равнобедренный, AC-AB=1, P=16. Возможно две ситуации: 1) BC=AB 2) BC=AC Рассмотрим первую ситуацию. Пусть AC=x. Тогда AB=x-1, BC=x-1. Тогда P=x+x-1+x-1=3x-2=16 => x=6 AC=6, AB=6-1=5, BC=5 Проводим высоту BH на AC. Так как AB=BC, то AH=HC=AC/2=3 По теореме Пифагора из треугольника ABH находим BH=√(AB²-AH²)=√(25-9)=4. Рассмотрим вторую ситуацию. Пусть AC=x, тогда BC=x, AB=x-1. P=x+x+x-1=3x-1=16 => x=17/3 AC=17/3, BC=17/3, AB=17/3-1=14/3 Из вершины C на сторону AB проводим высоту CD. Так как BC=AC, то BD=AD=AB/2=(14/3)/2=7/3 Зная это, из треугольника ADC можно найти cos∠A=AD/AC=(7/3)/(17/3)=7/17. Значит, sin∠A=√(1-cos²∠A)=√(1-49/289)=√240/17=4√15/17 Из вершины B опустим высоту BH на AC. Зная AB и sin∠A, из треугольника ABH можно найти BH=AB*sin∠A=(14/3)*4√15/17=56√15/51 ответ: 4 или 56√15/51.
Сторона ромба равна 13 дм, а одна из диагоналей - 10 дм. Найдите вторую диагонал
Поэтому тр-к АВО - пр/уг.ВО^{2} = 144ВО =12ВР = 2*ВО = 2*12 = 24 (дм) - это и есть вторая диагональ. Пусть ромб будет АВСР, АС = 10 дм, О -- т. перес. диаг. (они, кстати говоря, перпендикулярны)АВ^{2} = АО^{2} + ВО^{2}АО= АС/2=5ABCD -- ромб. BD, AC --его диагонали. AC и BD -- перпендикулярны , за свойством ромба. Отсюда получились четыре прямоугольный треугольника, берём любой например AOB ( угол О -- прямой то есть 90 градусов ) по теореме Пифагора АВ( в квадрате)= АО( в квадрате)+ВО( в квадрате) ..13( в квадрате)=5( в квадрате)+X( в квадрате).. X( в квадрате)=169-25=144 X=144(корень квадратный)=12-- это половинка диагонали, а вся равна 24 так как 12 умножить на 2 = 24ответ: 24 дм.
1) BC=AB
2) BC=AC
Рассмотрим первую ситуацию.
Пусть AC=x. Тогда AB=x-1, BC=x-1.
Тогда P=x+x-1+x-1=3x-2=16 => x=6
AC=6, AB=6-1=5, BC=5
Проводим высоту BH на AC. Так как AB=BC, то AH=HC=AC/2=3
По теореме Пифагора из треугольника ABH находим BH=√(AB²-AH²)=√(25-9)=4.
Рассмотрим вторую ситуацию. Пусть AC=x, тогда BC=x, AB=x-1.
P=x+x+x-1=3x-1=16 => x=17/3
AC=17/3, BC=17/3, AB=17/3-1=14/3
Из вершины C на сторону AB проводим высоту CD. Так как BC=AC, то BD=AD=AB/2=(14/3)/2=7/3
Зная это, из треугольника ADC можно найти cos∠A=AD/AC=(7/3)/(17/3)=7/17.
Значит, sin∠A=√(1-cos²∠A)=√(1-49/289)=√240/17=4√15/17
Из вершины B опустим высоту BH на AC. Зная AB и sin∠A, из треугольника ABH можно найти BH=AB*sin∠A=(14/3)*4√15/17=56√15/51
ответ: 4 или 56√15/51.
Сторона ромба равна 13 дм, а одна из диагоналей - 10 дм. Найдите вторую диагонал
Поэтому тр-к АВО - пр/уг.ВО^{2} = 144ВО =12ВР = 2*ВО = 2*12 = 24 (дм) - это и есть вторая диагональ. Пусть ромб будет АВСР, АС = 10 дм, О -- т. перес. диаг. (они, кстати говоря, перпендикулярны)АВ^{2} = АО^{2} + ВО^{2}АО= АС/2=5ABCD -- ромб. BD, AC --его диагонали. AC и BD -- перпендикулярны , за свойством ромба. Отсюда получились четыре прямоугольный треугольника, берём любой например AOB ( угол О -- прямой то есть 90 градусов ) по теореме Пифагора АВ( в квадрате)= АО( в квадрате)+ВО( в квадрате) ..13( в квадрате)=5( в квадрате)+X( в квадрате).. X( в квадрате)=169-25=144 X=144(корень квадратный)=12-- это половинка диагонали, а вся равна 24 так как 12 умножить на 2 = 24ответ: 24 дм.