Дана правильная шестиугольная призма, сторона основания которой равна 11 см. Высота призмы равна 103–√ см. Вычисли площадь диагональных сечений призмы. Площадь меньшего диагонального сечения равна? Площадь большего диагонального сечения равна?
Смотри, раз D удалена от точек вершин одинаково, то точка высоты из D будет центром описанной окружности, обозначу эту точку H, тогда HC = HA = HB (так как проекции одинаковых линий по 8 на плоскость треугольника будут равны, но вообще это рассматривается как задача) после имеет теорему синусов BC/cin30 = 2R, по свойству синуса , sin30 = BA/BC; cos30=AC/BA, cos30 = корень3/2, найдёт гипотенузу, после BC, теперь BC = 3*корень3, R=BC/cin30/2 = BC; так как син30 = 0.5, теперь так как DH высота к плоскости, то она перпендикулярна любой прямой в этой плоскости и радиусу тоже, а значит DH по пифагору = корень(8^2-r^2) = корень37, вот и ответ, но на всякий случай проверь, но ход решения такой, успехов :)
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см