Дан треугольник ABC. На сторонах AB и AC соответственно отложены точки D и E так, что DE= 3 см и ADBD=4/5. Через точки B и C проведена плоскость α, которая параллельна отрезку DE.
1 площадь равна половине произведения катетов 20 ·15:2=150 2 площадь параллелограмма равна произведению основания на высоту поэтому площадь делим на сторону и получаем высоту 30:6=5 30:10=3 ответ 5 и 3 3. если мы раздвинем диагонали трапеции то получим прямоугольный треугольник, равновеликий трапеции площадь треугольника равна 4·10:2 =20 ответ 20 4 площадь ромба равна половине произведения его диагоналей 8·12:2=48 ответ 48 5 диагональ по теореме Пифагора √(10²+14²=√296=2√74 площадь равна10·14=140
Здесь все просто, единствення задача про трапецию - если нужен чертеж и обоснование напишите
24π см³ объем конуса
12π+8√3π см² площадь полной поверхности конуса.
Объяснение:
SA=4cм боковое ребро и образующая конуса
АВ=6 см сторона треугольника.
Треугольник равносторонний.
Из формулы нахождения высоты треугольника
AK=AB√3/2=6√3/2=3√3 см высота треугольника.
т.О делит высоту в отношении 2:1, начиная от вершины.
АО=3√3:3*2=2√3 см радиус конуса
∆SOA - прямоугольный.
SO и ОА- катеты
SA- гипотенуза.
По теореме Пифагора найдем высоту конуса
SO²=SA²-OA²=4²-(2√3)²=16-4*3=4см
SO=√4=2 см высота конуса
Формула нахождения объема конуса
V=πR²h/3
V=π*OA²*SO/3=π*(2√3)²*2=24π см³ объем конуса
Формула нахождения площади полной поверхности конуса
Sпол=πR(R+l)
Sпол=π*ОА(ОА+SA)=π*2√3(2√3+4)=
=12π+8√3π см² площадь полной поверхности конуса.
2 площадь параллелограмма равна произведению основания на высоту
поэтому площадь делим на сторону и получаем высоту
30:6=5 30:10=3
ответ 5 и 3
3. если мы раздвинем диагонали трапеции то получим прямоугольный треугольник, равновеликий трапеции площадь треугольника равна 4·10:2 =20
ответ 20
4 площадь ромба равна половине произведения его диагоналей 8·12:2=48
ответ 48
5 диагональ по теореме Пифагора √(10²+14²=√296=2√74
площадь равна10·14=140
Здесь все просто, единствення задача про трапецию - если нужен чертеж и обоснование напишите