Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
В треугольнике, где угол 75°, второй равен половине прямого, то есть 45°, третий равен 180 - 75 - 45 = 60°.
Это один из острых углов прямоугольного треугольника.
Второй острый равен 90 - 60 = 30°.
Пусть катет против угла 30° градусов равен x, тогда катет против угла 60° равен x√3 (по тангенсу).
Площадь S = (1/2)x*x√3 = x^2*√3/2.
Приравняем её заданному значению.
x^2*√3/2 = 24*√3,
x^2 = 48,
x = √48 = 4√3. Это величина одного из катетов.
Второй равен 4√3*√3 = 12.
Гипотенуза равна √(4√3)^2 + 12^2) = √(48 + 144) = √192 = 8√3,
ответ: стороны равны 4√3, 12, 8√3.
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.