АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11
АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11
4) АС=24см, Sавсд=120см²
5) 12 см
Объяснение:
4)
В ромбе АВ=13см, ВД=10см
так как это ромб, то ВО=ОД=ВД/2=10/2=5 см
В ромбе диагонали пересекаются под прямыми углами
В прямоугольном треугольнике АВО по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов) находим сторону АО
АО²=АВ²-ВД²=13²-5²=144
АО=12см
АС=АО+ОС, АС=12+12=24см
Площадь ромба равна половине произведения его диагоналей
S=1/2*(ВД*АС)=1/2*(10*24)=120см²
5)Высота в треугольнике равна h=2/a√(p*(p-a)*(p-b)*(p-c)) где р - полупериметр p=(25+20+15)/2=30
Наименьшая высота будет при использовании в формуле наибольшей длины, поэтому
h=2/25√(30*(30-25)*(30-20)*(30-5))=2/25*150=12 см