Дан треугольник АБС, Е Через прямую АС проходит плоскость а , не совпадающая с плоскостью треугольника АБС a) докажите, что ЕК параллельна плоскости а б) найдите длину АС , если EK =4
Обозначим каждую часть диагонали х Вся диагональ 3х Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х² Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна 1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора равна√(3х)²-а² Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение 9х^4=a^4 3x²=a² x=a√3/3 диагональ равна а·√3 вторая сторона по теореме ПИфагора а√2
Рисунок к задаче простой, сделать его сумеет каждый. Пусть этот прямоугольник АВСД, ВД - диагональ. АВ=а АД - длинная сторона прямоугольника Перпендикуляры из А и С делят диагональ на части ВК и КД. Пусть ВК равна х, тогда КД=2х, а ВД=3х Треугольник АВД прямоугольный. АК в нем - высота. АВ и АД - катеты Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. АВ=а а²=ВК*ВД а²=х*3х 3х²=а² АД²=КД*ВД=2х*3х АД²=2*3х² 3х²=а² ( см. выше) АД²=2а² АД=а√2
Вся диагональ 3х
Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х²
Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна
1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора
равна√(3х)²-а²
Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение
9х^4=a^4
3x²=a²
x=a√3/3
диагональ равна а·√3
вторая сторона по теореме ПИфагора а√2
Пусть этот прямоугольник АВСД,
ВД - диагональ.
АВ=а
АД - длинная сторона прямоугольника
Перпендикуляры из А и С делят диагональ на части ВК и КД.
Пусть ВК равна х, тогда КД=2х, а ВД=3х
Треугольник АВД прямоугольный.
АК в нем - высота.
АВ и АД - катеты
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.
АВ=а
а²=ВК*ВД
а²=х*3х
3х²=а²
АД²=КД*ВД=2х*3х
АД²=2*3х²
3х²=а² ( см. выше)
АД²=2а²
АД=а√2