Так как в параллелограмме противолежащие стороны попарно параллельны и равны, то в параллелограмме MKPT MK=PT и KP=MT
Так как KP=MT, то диагональ MP является секущей, которая пересекает две параллельные прямые, тогда:
∠PMT = ∠KPM как накрест лежащие углы.
Так как МР является бисектрисой ∠M, то:
∠KMP = ∠PMT
Таким образом у нас получается :
∠PMT = ∠KPM = ∠KMP
В △MKP ∠KPM = ∠KMP, таким образом △MKP равнобедренный, тогда: МК=КР=Х
Так как MK = PT, то PT = KP = x, а также KP = MT = x.
В паралекграмме МКРТ все стороны равны х. Его периметр тогда будет равнятся:
P = MK + KP + PT + MT = x + x + x + x = 4×х
Теперь решаем:
4×х=60
х=60÷4
х=15
ответ: каждая сторона параллеграмма равна 15 см
Объяснение:
h₁ -высота на а, h₂ -высота на в.
S параллелограмма равна произведению основания на высоту.
В параллелограмме оснований -2, поэтому и высот тоже две( каждая к своему основанию) .S=а*h ⇒a=S:h и h=S:а
1 строка.
а в h₁ h₂ S
25 40 8 /// 200.
h₂ =200:40=5
2 строка.
50 \\\ 20 25 .
S=50*20=1000, в=1000:25=40
3 строка.
40 50 \\\ 8 .
S=50*8=400, h₁=400:40=10.
4 строка.
10 \\\ \\\ 20 100
h₁=100*10=10, в=100:20=5.
5 строка.
\\\ \\\ 20 15 300
а=300*20=15, в=300:15=20.
Так как в параллелограмме противолежащие стороны попарно параллельны и равны, то в параллелограмме MKPT MK=PT и KP=MT
Так как KP=MT, то диагональ MP является секущей, которая пересекает две параллельные прямые, тогда:
∠PMT = ∠KPM как накрест лежащие углы.
Так как МР является бисектрисой ∠M, то:
∠KMP = ∠PMT
Таким образом у нас получается :
∠PMT = ∠KPM = ∠KMP
В △MKP ∠KPM = ∠KMP, таким образом △MKP равнобедренный, тогда: МК=КР=Х
Так как MK = PT, то PT = KP = x, а также KP = MT = x.
В паралекграмме МКРТ все стороны равны х. Его периметр тогда будет равнятся:
P = MK + KP + PT + MT = x + x + x + x = 4×х
Теперь решаем:
4×х=60
х=60÷4
х=15
ответ: каждая сторона параллеграмма равна 15 см
Объяснение:
h₁ -высота на а, h₂ -высота на в.
S параллелограмма равна произведению основания на высоту.
В параллелограмме оснований -2, поэтому и высот тоже две( каждая к своему основанию) .S=а*h ⇒a=S:h и h=S:а
1 строка.
а в h₁ h₂ S
25 40 8 /// 200.
h₂ =200:40=5
2 строка.
а в h₁ h₂ S
50 \\\ 20 25 .
S=50*20=1000, в=1000:25=40
3 строка.
а в h₁ h₂ S
40 50 \\\ 8 .
S=50*8=400, h₁=400:40=10.
4 строка.
а в h₁ h₂ S
10 \\\ \\\ 20 100
h₁=100*10=10, в=100:20=5.
5 строка.
а в h₁ h₂ S
\\\ \\\ 20 15 300
а=300*20=15, в=300:15=20.