Дан треугольник авс площади 24 корня из 2 . на его медиане вd как на диаметре построена окружность, которая пересекает сторону вс в её середине найти его стороны.
ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов
В правильном шестиугольнике сторона равна радиусу описанной около него окружности:
R = a = 12 см
Тогда диаметр:
d = 2R = 24 см
2. Вершины квадрата делят окружность на 4 равных дуги. Дуга АВ равна 1/4 длины окружности.
Радиус окружности, описанной около квадрата:
R = a√2/2 = 5√2 · √2 / 2 = 5 см, тогда длина окружности:
C = 2πR = 2 · π · 5 = 10π см,
а длина дуги:
l = C/4 = 10π/4 = 2,5π см
3. Центр окружности, описанной около правильного треугольника, лежит в точке пересечения его биссектрис. А так как медианы и высоты совпадают с биссектрисами, то точкой пересечения делятся в отношении 2 : 1, считая от вершины. Расстояние от точки пересечения до вершины и есть радиус описанной окружности, это 2/3 высоты:
R = 2/3h = 2/3 · 9 = 6 см
Sкруга = πR² = 36π см²
4. Радиус вписанной окружности равен половине радиуса описанной окружности в правильном треугольнике:
r = R/2 = 18/2 = 9 см.
Длина вписанной окружности:
C = 2πr = 2 · π · 9 = 18π см
Из формулы радиуса вписанной окружности выразим сторону:
ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов
1. Сторона правильного шестиугольника:
a = P / 6 = 72 / 6 = 12 см
В правильном шестиугольнике сторона равна радиусу описанной около него окружности:
R = a = 12 см
Тогда диаметр:
d = 2R = 24 см
2. Вершины квадрата делят окружность на 4 равных дуги. Дуга АВ равна 1/4 длины окружности.
Радиус окружности, описанной около квадрата:
R = a√2/2 = 5√2 · √2 / 2 = 5 см, тогда длина окружности:
C = 2πR = 2 · π · 5 = 10π см,
а длина дуги:
l = C/4 = 10π/4 = 2,5π см
3. Центр окружности, описанной около правильного треугольника, лежит в точке пересечения его биссектрис. А так как медианы и высоты совпадают с биссектрисами, то точкой пересечения делятся в отношении 2 : 1, считая от вершины. Расстояние от точки пересечения до вершины и есть радиус описанной окружности, это 2/3 высоты:
R = 2/3h = 2/3 · 9 = 6 см
Sкруга = πR² = 36π см²
4. Радиус вписанной окружности равен половине радиуса описанной окружности в правильном треугольнике:
r = R/2 = 18/2 = 9 см.
Длина вписанной окружности:
C = 2πr = 2 · π · 9 = 18π см
Из формулы радиуса вписанной окружности выразим сторону:
r = a√3/6
a = 6r/√3 = 2√3r = 2√3 · 9 = 18√3 см
P = 3a = 54√3 см
P / C = 54√3 / (18π) = 3√3/π