Если ∠С = 40°, то ∠С = ∠A. Из этого следует, что △ABC - равнобедренный (BA = BC), что и требовалось доказать.
б) Решение:
Выше мы уже доказали, что △ABC - равнобедренный (BA = BC).
В равнобедренном треугольнике высота, проведённая из вершины угла, противоположного основанию (в данном случае из ∠B), является также его биссектрисой.
Биссектриса делит угол пополам. Отсюда ∠ABH = ∠CBH. А если ∠B = 100°, то ∠ABH = ∠CBH = 100° / 2 = 50°.
Летние каникулы всегда приносят приятные впечатления. позади остались уроки, школьные звонки и переменки, а впереди – ожидание чего-то хорошего. вдвоем с сестрой мы ухаживаем за нашими овощами. на нашей зеленой грядке растут укроп, петрушка, щавель и редис. мы с удовольствием поливаем и пропалываем свою зеленую грядку. и приятно слышать от мамы за обедом следующие слова: " какой удивительно вкусный салат получился из ваших овощей! какие вы умнички, мои девочки! " летом времени достаточно: можно и с подружками погулять, и в гости съездить, и в разные игры поиграть. но больше всего я поездки на море с родителями. я наконец-то научилась плавать этим летом и рада этому. море мне нравится. оно настолько глубокое и широкое, и такое загадочное, что иногда даже пугает своей непредсказуемостью. море бывает одновременно близким и далеким, теплым и прохладным. а как приятно в летний жаркий день окунуться в свежую прохладную воду! и плавать, нырять, плескаться! я разложил на столе морские раковины. прикладывая их к уху, я различаю шум прибоя. и можно почувствовать силу морской волны, которая летит, и попадая на камень, выбрасывает мне в лицо множество ярких соленых брызг. мне весело, я смеюсь вместе со всеми: с родителями, морем, солнцем и чайками. лето пролетает стремительно, и уже снова приближается сентябрь. но это и неплохо, ведь совсем скоро я смогу увидеться со своими одноклассниками, поделиться со всеми друзьями и подружками своими летними впечатлениями. а еще хочется поскорее начать учиться, и вновь радовать своими успехами маму с папой.
а) Доказательство:
По теореме о сумме углов в треугольнике:
∠С = 180° - ∠A - ∠B = 180° - 40° - 100° = 40°.
Если ∠С = 40°, то ∠С = ∠A. Из этого следует, что △ABC - равнобедренный (BA = BC), что и требовалось доказать.
б) Решение:
Выше мы уже доказали, что △ABC - равнобедренный (BA = BC).
В равнобедренном треугольнике высота, проведённая из вершины угла, противоположного основанию (в данном случае из ∠B), является также его биссектрисой.
Биссектриса делит угол пополам. Отсюда ∠ABH = ∠CBH. А если ∠B = 100°, то ∠ABH = ∠CBH = 100° / 2 = 50°.
ответ: 50°.