Диагонали точкой пересечения делятся пополам, а раз сами диагонали равны, то и отрезки образовавшиеся в результате пересечения тоже равны. А раз они пересекаются под прямым углом, то все четыре угла, образовавшиеся в результате пересечения прямые, а следовательно и равные друг другу. Если мы рассмотрим четыре треугольника, катоые образованы пересечением диагоналей и сторонами прямоугольника, то заметим, что они равны по двум сторонам и углу между ними. На основании равенства треугольников делаем вывод о равенстве сторон прямоугольника, а значит прямоугольник => квадрат
А) "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными." Прямые АК и ВС1 - скрещивающиеся. "Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, которые параллельны данным скрещивающимся прямым". Диагональ АD1 параллельна диагонали ВС1. Значит искомый угол - <D1AK. Поскольку АС=АD1=D1C (диагонали граней), то треугольник АD1С - равносторонний и АК - биссектриса угла D1AC=60°. Значит искомый угол между прямыми ВС1 и АК равен 30° б) Перенесем В1D параллельно так, чтобы точка В1 совпала с точкой А1. А1М = а√3 (А1М=В1D - диагональ куба) МР=√(4а²+а²)=а√5 (так как МС=2а, СР=а, поскольку СК1 - средняя линия тр-ка АВР). АК1=√(а²/4+а²)=а√5/2 (По Пифагору из прямоугольного треугольника АК1D) А1К=√(а²/4+5а²/4)=а√6/2 (По Пифагору из прямоугольного треугольника А1КН) А1Р=2*А1К=а√6. (Поскольку КК1 - средняя линия тр-ка АА1Р). По теореме косинусов: Cosα=(А1М²+А1Р²-МР²)/2*А1М*А1Р. Cosα=(3а²+6а²-5а²)/2*а√3*а√6 = 4а²/6а²√2 = √2/3. Значит угол равен ≈62°. Координатный метод: Привяжем к кубу систему координат. Поскольку искомые углы не зависят от размера куба, пусть его стороны равны 2. Тогда имеем точки В1(0;2;0), D(2;0;2), A1(0;2;2) и K(2;1;1). Координаты вектора равны разности соответствующих координат точек его конца и начала ab{Xb-Xa;Yb-Ya;Zb-Za}. Тогда вектор B1D{2;-2;2}, вектор А1К{2;-1;-1}. Угол α между вектором a и b вычисляется по формуле: cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²) * √(x2²+y2²+z2²)]. В нашем случае: cosα= (4+2-2)/[√(4+4+4)*√(4+1+1)] или cosα= 4/6√2=2/3√2=√2/3. Значит угол равен ≈62°.
"Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, которые параллельны данным скрещивающимся прямым".
Диагональ АD1 параллельна диагонали ВС1. Значит искомый угол - <D1AK. Поскольку АС=АD1=D1C (диагонали граней), то треугольник АD1С - равносторонний и АК - биссектриса угла D1AC=60°.
Значит искомый угол между прямыми ВС1 и АК равен 30°
б) Перенесем В1D параллельно так, чтобы точка В1 совпала с точкой А1.
А1М = а√3 (А1М=В1D - диагональ куба)
МР=√(4а²+а²)=а√5 (так как МС=2а, СР=а, поскольку СК1 - средняя линия тр-ка АВР).
АК1=√(а²/4+а²)=а√5/2 (По Пифагору из прямоугольного треугольника АК1D)
А1К=√(а²/4+5а²/4)=а√6/2 (По Пифагору из прямоугольного треугольника А1КН)
А1Р=2*А1К=а√6. (Поскольку КК1 - средняя линия тр-ка АА1Р).
По теореме косинусов:
Cosα=(А1М²+А1Р²-МР²)/2*А1М*А1Р.
Cosα=(3а²+6а²-5а²)/2*а√3*а√6 = 4а²/6а²√2 = √2/3.
Значит угол равен ≈62°.
Координатный метод:
Привяжем к кубу систему координат. Поскольку искомые углы не зависят от размера куба, пусть его стороны равны 2. Тогда имеем точки В1(0;2;0), D(2;0;2), A1(0;2;2) и K(2;1;1).
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{Xb-Xa;Yb-Ya;Zb-Za}.
Тогда вектор B1D{2;-2;2}, вектор А1К{2;-1;-1}.
Угол α между вектором a и b вычисляется по формуле:
cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²) * √(x2²+y2²+z2²)].
В нашем случае: cosα= (4+2-2)/[√(4+4+4)*√(4+1+1)] или
cosα= 4/6√2=2/3√2=√2/3. Значит угол равен ≈62°.