Прямые CD и C1D1 лежат в параллельных плоскостях. Значит они либо скрещиваются либо параллельны. Поскольку плоскость задается двумя пересекающимися прямыми,то точки C,D ,C1,D1 лежат в одной плоскости. То прямые СD и C1D1 тоже лежат в одной плоскости назовем ее b. Но скрещивающиеся прямые не лежат в одной плоскости. Тогда СD ||C1D1. Откуда из подобия треугольников по накрест лежащим углам верно что: CK/KC1=CD/C1D1 С1D1=x CK/(CC1-CK)=5/x (CK:CC1)/(1-CK:CC1)=5/x (2/7)/(1-2/7)=5/x 2/5=5/x x=25/2=12,5 ответ:12,5
1) найдём длины сторон. M(-6;1); N(2;4); (MN)^2=(2*(-6))^2+(4-1)^2; (MN)^2=64+9; MN=√73; M(-6;1); K(2;-2); (MK)^2=(2-(-6))^2+(-2-1)^2; (MK)^2=64+9; MK=√73; N(2;4); K(2;-2); (NK)^2=(2-2)^2+(-2-4)^2; (NK)^2=0+36; NK=√36=6; Так как MN=MK=√73, то треугольник MNK - равнобедренный. 2) Опустим высоту МС на сторону NK. Так как треугольник равнобедренный, то МС является и медианой. Точка С - это середина отрезка NK: N(2;4); K(2;-2); Найдём координаты точки С: С{(2+2)/2; (4+(-2))/2}=С(2; 1); Найдём длину высоты МС: М(-6; 1); С(2;1); (МС)^2=(2-(-6))^2+(1-1)^2; (МС)^2=64+0; МС=√64=8; ответ: 8 Мы использовали то, что высота была опущена на основание равнобедренного треугольника. А в общем случае, зная длины трёх сторон нужно найти площадь треугольника. А потом, зная площадь треугольника и длину стороны, на которую проведена высота, находим высоту.
Значит они либо скрещиваются либо параллельны.
Поскольку плоскость задается двумя пересекающимися прямыми,то точки C,D ,C1,D1 лежат в одной плоскости. То прямые СD и C1D1 тоже лежат в одной плоскости назовем ее b. Но скрещивающиеся прямые не лежат в одной плоскости. Тогда СD ||C1D1.
Откуда из подобия треугольников по накрест лежащим углам верно что: CK/KC1=CD/C1D1 С1D1=x
CK/(CC1-CK)=5/x
(CK:CC1)/(1-CK:CC1)=5/x
(2/7)/(1-2/7)=5/x
2/5=5/x
x=25/2=12,5
ответ:12,5