В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
yulakri
yulakri
11.09.2021 00:07 •  Геометрия

Дана пирамида abcd , ab=√3 ,tga=6 , найти do. подробное решение

Показать ответ
Ответ:
литературщик
литературщик
13.01.2024 19:37
Хорошо, я с удовольствием помогу вам решить эту задачу!

Изначально давайте проанализируем данные, которые даны в задаче:
- Мы имеем пирамиду abcd, где ab = √3 (это значит, что сторона ab равна корню квадратному из 3).
- Также дано, что тангенс угла а равен 6.

Вам нужно найти значение do, и для этого нам понадобится теорема Пифагора и определение тангенса.

Первым шагом давайте найдем значение bc (сторона bc пирамиды abcd). Поскольку мы знаем, что ab = √3, мы можем использовать теорему Пифагора:
bc^2 = ac^2 + ab^2
bc^2 = do^2 + (√3)^2
bc^2 = do^2 + 3

Теперь у нас есть одно уравнение с двумя неизвестными (bc и do), но у нас также есть другая информация о функции тангенса.

Для угла а мы знаем, что tg(a) = 6. По определению тангенса:
tg(a) = opposite/adjacent = bc/do

Теперь мы можем использовать это знание, чтобы установить связь между bc и do:
6 = bc/do
bc = 6do

Теперь, чтобы продолжить решение, мы можем заменить значение bc в нашем первом уравнении:
(6do)^2 = do^2 + 3
36d^2o^2 = d^2o^2 + 3
36d^2o^2 - d^2o^2 = 3
35do^2 = 3

Теперь, чтобы найти значение do, давайте избавимся от квадратного корня на правой стороне уравнения, возведя обе части в квадрат:
(35do^2)^2 = 3^2
1225d^2o^4 = 9

Теперь разделим обе части на 1225, чтобы изолировать do:
d^2o^4 = 9/1225
d^2o^4 = 1/135.55

Чтобы найти dо, возведем обе стороны в 1/4 степень (корень четвертой степени):
(d^2o^4)^(1/4) = (1/135.55)^(1/4)
do = (1/135.55)^(1/4)

Таким образом, мы нашли значение do с помощью пошагового решения, основанного на теореме Пифагора и определении тангенса.

Пожалуйста, обратите внимание, что этот ответ может быть численно выражен и округлен для удобства.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота