Дана пирамида, все боковые ребра которой перпендикулярны друг другу, и равны 3, 4 и 12. найдите сумму расстояний между серединами противоположных ребер.
Такая пирамида называется "прямоугольной". характерное её свойство, что она может быть восстановлена до прямоугольного параллелепипеда, со сторонами 3 4 12 - большая диагональ его √(3^2+4^2+12^2)=13 расстояние же между противоположными ребрами √((3/2)^2+(4/2)^2+(12/2)^2)=13*1/2 у нас три расстояния - ответ 13*3/2=19.5
расстояние же между противоположными ребрами √((3/2)^2+(4/2)^2+(12/2)^2)=13*1/2
у нас три расстояния - ответ 13*3/2=19.5
Вариант решения.
Пусть в пирамиде ОАВС сторона АО=3, СО=4, ВО=12.
Для начала найдем длины сторон ∆ АВС.
По т. Пифагора АВ²=AO²+BO²=9+144=153
По т.Пифагора ВС²=ОС²+ОВ²=16+144=160
АС=√(АО²+ОС²)=√(9+16)=5
Обозначим середину АС - Н; ОВ =К; АО - М,; ВС - Р; ОС - Т; АВ -Е.
Расстояние между серединами АС и ОВ - медиана НК в ∆ ОНВ.
ОН- медиана прямоугольного АОС и равна АС:2=2,5
Формула медианы треугольника
М=0,5•√(2a²+2b²-c²), где а. b и с - стороны, причем с - сторона, к которой проведена медиана.
Тогдв М²=0,25•((2a²+2b²-c²) ⇒
ВН²=0,25•(2•AB²+2•BC²-AC²)=0,25•(2•160+2•153-25)=0,25•601
НК=0,5•√(2•OH*+2*BH*-OB*)=0,5√(12,5+0,5•601-144)=0,5•13=6,5
Аналогично вычисляются сначала медианы АР и ОР из ∆ АВС и ∆ СОВ, затем МР=6,5 из ∆ АРО и медианы АТ и ВТ из ∆ АОС и ∆АОВ, затем ТЕ=6,5 из ∆ АТВ.
Сумма найденных расстояний 3•6,5=19,5