Дана правильная четырёхугольная пирамида pabcd, все рёбра которой равны 12. точка n - середина pa, точка k делит боковое ребро pb в отношение 2: 1 (считается от вершины p)
а) докажите что сечение пирмамиды плоскостью проходящей, через точки n и k параллельно ad и является равнобедренной трапецией.
б) найдите площадь сечения
Объем призмы находится по формуле: V = S * h, где S - площадь основания, h - высота призмы.
Для того, чтобы найти площадь правильного шестиугольника, нужно найти его сторону.
Сторона шестиугольника равна радиусу его описанной окружности.
Треугольник F1C1C - прямоугольный => cos α = F1C1 / F1C
cos α = F1C1 / l
F1C1 = l * cos α
F1C1 - диаметр описанной окружности. R = OC1 = (l * cos α) / 2
Соединив точку О со всеми вершинами шестиугольника A1B1C1D1E1F1 мы получим шесть равных равносторонних треугольников.
Значит площадь шестиугольника равна шести площадям этих треугольников.
Площадь треугольника находим по следующей формуле:
S = 0,5 * a * b * sin α, где α - угол между сторонами a и b.
Так как мы находим площадь равностороннего треугольника α будет равен 60°.
S BOC1 = 0,5 * ((l * cos α) / 2) * ((l * cos α) / 2) * sin 60° = 0,5 ((l ² * cos ² α) / 4) * (√3) / 2 = ((√3) * l ² * cos ² α) / 16.
S A1B1C1D1E1F1 = S BOC1 * 6 = (( (√3) * l ² * cos ² α) / 16) * 6 = (3 * (√3) * l ² * cos ² α) / 8.
Высоту CC1 можно вычислить из треугольника F1C1C - sin α = C1C / F1C
sin α = C1C / l
C1C = l * sin α
V = ((3 * (√3) * l ² * cos ² α) / 8) * (l * sin α) = (3 * (√3) * l ³ * cos ² α * sin α) / 8.
Так как треугольник ABC - равнобедренный ( по условию ) медиана AH, равная 8 см, будет являться также высотой и биссектрисой. Треугольник ABH - прямоугольный, AB = 10 см,
AH = 8 см. По теореме Пифагора: BH ² = AB ² - AH ²
BH ² = 10 ² - 8 ² = 100 - 64 = 36
BH = 6 см.
BH - половина BC => BC = 12 см. Треугольник BCC1 - прямоугольный. По теореме Пифагора находим высоту призмы: CC1 ² = BC1 ² - BC ²
CC1 ² = 13 ² - 12 ² = 169 - 144 = 25.
CC1 = 5 см.
Объем призмы равен произведению площади основания на высоту: V = S * h
Высоту мы уже нашли - осталось найти площадь основания.
Треугольник ABC содержит в себе два прямоугольных треугольника => площадь ABC равна сумме площадей этих треугольников. S ABH = 8 * 6 * 0,5 = 24 см ². Площадь второго треугольника тоже равна 24. Значит S ABC = 24 + 24 = 48 см ².
V = 48 * 5 = 240 см ³.
P.S: Приношу извинения за кривой рисунок, рисовал в паинте :)