Дан отрезок АВ. Отрезок надо разделить в отношении 5 : 4, т.е. всего 9 равных частей. Начертим луч с началом в точке А под произвольным углом к отрезку. На луче отложим последовательно 9 равных отрезков (длина одного отрезка произвольная). Последняя из отмеченных точек - С. Соединим точку С с другим концом данного отрезка - В. Через концы отложенных равных отрезков проведем прямые, параллельные прямой ВС. По теореме Фалеса эти прямые отсекут на отрезке АВ 9 равных отрезков. Отсчитаем 5 из них и отметим точку К. АК : КВ = 5 : 4.
Отрезок надо разделить в отношении 5 : 4, т.е. всего 9 равных частей.
Начертим луч с началом в точке А под произвольным углом к отрезку.
На луче отложим последовательно 9 равных отрезков (длина одного отрезка произвольная).
Последняя из отмеченных точек - С.
Соединим точку С с другим концом данного отрезка - В.
Через концы отложенных равных отрезков проведем прямые, параллельные прямой ВС.
По теореме Фалеса эти прямые отсекут на отрезке АВ 9 равных отрезков.
Отсчитаем 5 из них и отметим точку К.
АК : КВ = 5 : 4.
В трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.