ΔАВС: АВ=ВС, <В=50° Биссектриса АК угла А при основании делит угол А на 2 равных <ВАК=<САК. Медиана ВМ, проведенная к основанию, делит основание на АМ=МС; также она является и высотой и биссектрисой (<АВМ=<СВМ=50/2=25°). Медиана ВМ и биссектриса АК пересекаются в точке О Нужно найти угол АОВ. В равнобедренном треугольнике углы при основании равны, значит <А=<С=(180-<В)/2=(180-50)/2=65°. Тогда <ВАК=65/2=32,5° Из ΔАВО найдем <АОВ=180-<АВО-<ВАО=180-25-32,5=122,5°=122°30'
ΔАВС: АВ=ВС, <В=50° Биссектриса АК угла А при основании делит угол А на 2 равных <ВАК=<САК. Медиана ВМ, проведенная к основанию, делит основание на АМ=МС; также она является и высотой и биссектрисой (<АВМ=<СВМ=50/2=25°). Медиана ВМ и биссектриса АК пересекаются в точке О Нужно найти угол АОВ. В равнобедренном треугольнике углы при основании равны, значит <А=<С=(180-<В)/2=(180-50)/2=65°. Тогда <ВАК=65/2=32,5° Из ΔАВО найдем <АОВ=180-<АВО-<ВАО=180-25-32,5=122,5°=122°30'
Биссектриса АК угла А при основании делит угол А на 2 равных <ВАК=<САК.
Медиана ВМ, проведенная к основанию, делит основание на АМ=МС; также она является и высотой и биссектрисой (<АВМ=<СВМ=50/2=25°).
Медиана ВМ и биссектриса АК пересекаются в точке О
Нужно найти угол АОВ.
В равнобедренном треугольнике углы при основании равны, значит <А=<С=(180-<В)/2=(180-50)/2=65°. Тогда <ВАК=65/2=32,5°
Из ΔАВО найдем <АОВ=180-<АВО-<ВАО=180-25-32,5=122,5°=122°30'
Биссектриса АК угла А при основании делит угол А на 2 равных <ВАК=<САК.
Медиана ВМ, проведенная к основанию, делит основание на АМ=МС; также она является и высотой и биссектрисой (<АВМ=<СВМ=50/2=25°).
Медиана ВМ и биссектриса АК пересекаются в точке О
Нужно найти угол АОВ.
В равнобедренном треугольнике углы при основании равны, значит <А=<С=(180-<В)/2=(180-50)/2=65°. Тогда <ВАК=65/2=32,5°
Из ΔАВО найдем <АОВ=180-<АВО-<ВАО=180-25-32,5=122,5°=122°30'