Дана система координат. Через начало координат проведена прямая А, которая образует угол в 30 градусов с осью абсцисс. На данной прямой взяли точку М ( х,y ). Найти зависимость ординаты этой точки от отрезка ОМ. (т.е. выразить Y через отрезок ОМ
1) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1 Пусть B₁C = x, тогда AB₁ = 2x x + 2x = 9 3x = 9 x = 3 B₁C = 3, AB₁ = 6 AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис. ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3 2) CO ·OD = AO · OB CO = OD = x x² = 4·25 x² = 100 x = 10 CD = 20 3) ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒ DK / KB = FD / BM = 1/2
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1
Пусть B₁C = x, тогда AB₁ = 2x
x + 2x = 9
3x = 9
x = 3
B₁C = 3, AB₁ = 6
AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис.
ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3
2)
CO ·OD = AO · OB
CO = OD = x
x² = 4·25
x² = 100
x = 10
CD = 20
3)
ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒
DK / KB = FD / BM = 1/2
По условию МС=2DМ⇒
DC=DM+2 DM=3 ДМ
Так как АВ=3 CD, то АВ=3•3DM=9DM
Пусть КН - высота трапеции АВСD и равна h.
Тогда площадь трапеции равна 0,5•(CD+AB)•h=6 DM•h
∆ MNC~∆ ANB - по равенству всех углов ( углы при N равны как вертикальные, а при основаниях - как накрестлежащие при параллельных прямых и секущих)
МС:АВ=2DM:9DM=2/9
Отношение сходственных элементов подобных треугольников одинаково.⇒
КN:NH=2:9
h=KN+NH=2+9=11 (частей)
KN=2h/11
Тогда S ∆ MNC=0,5•MC•2h/11=2DM•h/11
Отсюда S ∆ MNC:S ABCD=(2DM•h/11):6 DM•h=1/33