Дана точка M (-3; -4). Точка N симметрична точке M относительно оси координат запишите координаты точки M A) относительно оси OX Б) относительно оси OУ
Всё решается очень просто. Если радиус окружности равен "r", а сторона треугольника равна "а", то можно составить простое уравнение (по условию задачи)
3*а=2*pi*r Тогда сторона треугольника а=(2/3)*pi*r Радиус вписанной окружности в равносторонний треугольник вычисляется по формуле: а*(sqrt 3)/6 "Площадь данного круга"=pi*r^2 Осталось в формулу "а*(sqrt 3)/6" подставить "а=(2/3)*pi*r", возвести в квадрат и умножить на "pi", найти площадь вписанной окружности. И последнее действие: разделить pi*r^2 на площадь вписанной окружности в треугольник. Вот и всё решение.
m=V*p
m(p-pa)= 10 мл* 1,14г/мл = 114 г
Найдём массу серной кислоты в растворе.
m=m(p-pa)*W/100
m( кислоты)= 114*20/100= 22,8г
Найдём массу 5%-ного раствора кислоты.
m(p-pa2)= m(кислоты)/ W*100
m(p-pa2)= 22,8/5*100=456г
Найдём массу воды добовляемую к раствору( из массы 5%-ного раствора вычитаем массу 20%-ного)
m(H2O)=m(p-pa2)-m(p-pa)
m(H2O)=456-114=342г
Найдём объем воды которую необходимо долить(переведём массу воды в объем р=1г/мл)
V=m/p
V(H2O)=342г/1г/мл= 342 мл
ответ: необходимо добавить 342 мл воды
Если радиус окружности равен "r", а сторона треугольника равна "а", то можно составить простое уравнение (по условию задачи)
3*а=2*pi*r
Тогда сторона треугольника а=(2/3)*pi*r
Радиус вписанной окружности в равносторонний треугольник вычисляется по формуле: а*(sqrt 3)/6
"Площадь данного круга"=pi*r^2
Осталось в формулу "а*(sqrt 3)/6" подставить "а=(2/3)*pi*r", возвести в квадрат и умножить на "pi", найти площадь вписанной окружности.
И последнее действие: разделить pi*r^2 на площадь вписанной окружности в треугольник.
Вот и всё решение.