Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
АВ+АС+ВС+2*ДА=27 ,
Р( АВС)+2*ДА=27 ,
18+2*ДА=25 ,
2*ДА=9 ,
ДА=4,5 см .