Опускаем высоту MN длиной h на снование, получаем прямоугольный треугольник MNO. Из его построения и по теореме Пифагора следует h^2+(KO-h)^2=(MO)^2 Отсюда можем найти h h=KO/2±sqrt(2*MO^2-KO^2), а значит, и площадь параллелограмма. Отсюда, кстати, следует, что решение существует только если подкоренное выражение положительно, и при при MO=5 максимальная длина основания KO может быть приблизительно не более 7 ~ sqrt(50). Имеем 2 решения квадратного уравнения, и для предложенного значения KO=4sqrt(2): h1=sqrt(2)/2 h2=7sqrt(2)/2 Соответственно, площади параллелограмма равны s1=4 s2=28
найдём высоту конуса. Расстоянием от центра основания до образующей является перпендикуляр, длина которого =8. Рассмотрим осевое сечение конуса. Высота конуса делит его на 2 равных прямоугольных треугольника. Пусть вершина В, центр основания О, расстояние до образующей ОК. Из прямоугольного треугольника АОК
АК= корень из АО^2-OK^2= корень из (4 корень из 5)^2-8^2= корень из 16*5-64= корень из 16=4.
Треугольник АОВ подобен треугольнику АКО по двум углам (угол А-общий,
угол О=углу К=90градусов). Из подобия треугольников следует АО:АК=ВО:ОК
Опускаем высоту MN длиной h на снование, получаем прямоугольный треугольник MNO. Из его построения и по теореме Пифагора следует
h^2+(KO-h)^2=(MO)^2
Отсюда можем найти h
h=KO/2±sqrt(2*MO^2-KO^2),
а значит, и площадь параллелограмма.
Отсюда, кстати, следует, что решение существует только если подкоренное выражение положительно, и при при MO=5 максимальная длина основания KO может быть приблизительно не более 7 ~ sqrt(50).
Имеем 2 решения квадратного уравнения, и для предложенного значения KO=4sqrt(2):
h1=sqrt(2)/2
h2=7sqrt(2)/2
Соответственно, площади параллелограмма равны
s1=4
s2=28
V=1/3*S(основания)*h,
S(основания)=пr^2=п*(4 корень из 5)^2=п*16*5=80п
найдём высоту конуса. Расстоянием от центра основания до образующей является перпендикуляр, длина которого =8. Рассмотрим осевое сечение конуса. Высота конуса делит его на 2 равных прямоугольных треугольника. Пусть вершина В, центр основания О, расстояние до образующей ОК. Из прямоугольного треугольника АОК
АК= корень из АО^2-OK^2= корень из (4 корень из 5)^2-8^2= корень из 16*5-64= корень из 16=4.
Треугольник АОВ подобен треугольнику АКО по двум углам (угол А-общий,
угол О=углу К=90градусов). Из подобия треугольников следует АО:АК=ВО:ОК
4 корень из5:4=h:8. h=8*4 корень из5/4=8 корень из5
V=1/3*80п*8 корень из5=640 корень из5*п/3