Пусть дан параллелограмм авсd и его диагональ ас. полный угол а равен сумме меньших углов, из которых он состоит, т.е. ваd = вас + dас = 40 + 20 = 60 градусов. теперь рассмотрим сам параллелограмм. сторона ав является секущей по отношению к пареллельным прям вс и аd (противолежащие стороны параллелограмма параллельны друг другу). по теореме о углах, образованный при пересечении параллельных прямых секущей, сумма односторонних углов, коими являются углы авс и ваd, равна 180 градусам, т.е. авс + ваd = 180. авс = 180 - ваd = 180 - 60 = 120 градусов. больший угол параллелограмма авс равен 180 градусам.
Расстояние между двумя точками плоскости описывается выражением , где (х1; у1) - координаты начала отрезка, (х2; у2) - координаты конца отрезка.
Найдем искомую точку для оси ординат Оу. Пусть С(0;у) - точка, равноудаленная от точек А и В. Тогда: (0 - (-3))^2 + (y - 5)^2 = (0 - 6)^2 + (y - 4)^2, или, после преобразований, (у - 5)^2 - (у - 4)^2 = 27, 9 - 2y = 27, y = -9.
Следовательно, координаты искомой точки С(0; -9)
Проделывая то же самое для точки М(х; 0) на оси абсцисс, получим координаты точки М (1; 0).
Найдем искомую точку для оси ординат Оу.
Пусть С(0;у) - точка, равноудаленная от точек А и В.
Тогда:
(0 - (-3))^2 + (y - 5)^2 = (0 - 6)^2 + (y - 4)^2,
или, после преобразований, (у - 5)^2 - (у - 4)^2 = 27,
9 - 2y = 27,
y = -9.
Следовательно, координаты искомой точки С(0; -9)
Проделывая то же самое для точки М(х; 0) на оси абсцисс, получим координаты точки М (1; 0).
ответ: (0;-9), (1;0)