Есть у высоты равнобедренной трапеции, опущенной из тупого угла, свойство: она делит большее основание на две части, меньшая из которых равна полуразности оснований, большая - их полусумме. Откуда оно появилось - легко понять из рисунка. Опустив из В высоту ВН на АД, получим АН=(АД-ВС):2 =(16-4):2=6 Треугольник АВН - прямоугольный. Гипотенуза АВ=10, катет АН=6, и тут же вспоминается "египетский треугольник" с отношением сторон 3:4:5. Здесь коэффициент этого отношение k=10:5=2 ВН=4*2=8 см Но можно ВН найти по т. Пифагора - результат будет тем же. ВН=√(АВ²-АН²)=√(100-36)=8 см
Опустив из В высоту ВН на АД, получим
АН=(АД-ВС):2 =(16-4):2=6
Треугольник АВН - прямоугольный.
Гипотенуза АВ=10, катет АН=6, и тут же вспоминается "египетский треугольник" с отношением сторон 3:4:5.
Здесь коэффициент этого отношение k=10:5=2
ВН=4*2=8 см
Но можно ВН найти по т. Пифагора - результат будет тем же.
ВН=√(АВ²-АН²)=√(100-36)=8 см
Задача 1
одна сторона пар-ма = 3*корень из 3=5,196
косинус 30 градусов = 0,15425
опускаем высоту из вершины пар-ма, получается треугольник с прямым углом и углом в 30 градусов, гипотинуза которога = 2 (по условию задачи)
найдем высоту = 2* синус 30=2*0,988=1,976
далее ищем катер, прилежащий к углу 30 гр
для этого ,15425*2 (гипотинузу) = 0,3
далее складываем длинну стороны пар-ма с длинной найденного катета. =5,196+,03=5,496
вывсота и сторона в 5,496 образуют прямоугольник, диаганаль которого легко найти по теореме пифагора = корень из (5,196*5,196+1,979*1,976) = 5,8
Задача 2
опускаем высоту из вершины трапеции на основание, получается прямоугольный треугольник
если один катет= высоте и = 6, а гипотинуза =10, то второй катет =
= корень из (10*10-6*6)= корень из 64=8
меньше основание = 20-8-8= 4