см рис. во вложении. Обозначим середину ВС точкой К. Известно, что угол, опирающийся на диаметр является прямым. Для данного треугольника угол ВКМ - прямой. Медиана совпадает с высотой в равнобедренном треугольнике, значит МС=МВ и диаметр описанной окружности в два раза больше диаметра заданной, потому что точка М является центром описанной окружности треугольника. МК - срединный перпендикуляр и МТ тоже срединный перпендикуляр. Это видно из второго рисунка, там показаны конгруэнтные треугольники. В пересечении срединных перпендикуляров находится центр описанной окружности. А можно и еще проще рассуждать: ВМ = МС = 3, АМ = МС = 3. Расстояние от точки М до вершин треугольника АВС равное, значит М - центр описанной окружности.
Начертите чертёж и посмотрите внимательно. Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон. Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки. Такое рассуждение можно провести для всех 4-х вершин. Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D. Периметр трапеции - это 2(А+В+С+D)=12. Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6. Полусумма - (А+В+С+D)/2=6/2=3.
см рис. во вложении. Обозначим середину ВС точкой К. Известно, что угол, опирающийся на диаметр является прямым. Для данного треугольника угол ВКМ - прямой. Медиана совпадает с высотой в равнобедренном треугольнике, значит МС=МВ и диаметр описанной окружности в два раза больше диаметра заданной, потому что точка М является центром описанной окружности треугольника. МК - срединный перпендикуляр и МТ тоже срединный перпендикуляр. Это видно из второго рисунка, там показаны конгруэнтные треугольники. В пересечении срединных перпендикуляров находится центр описанной окружности. А можно и еще проще рассуждать: ВМ = МС = 3, АМ = МС = 3. Расстояние от точки М до вершин треугольника АВС равное, значит М - центр описанной окружности.
ответ диаметр равен 6.
Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон.
Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки.
Такое рассуждение можно провести для всех 4-х вершин.
Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D.
Периметр трапеции - это 2(А+В+С+D)=12.
Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6.
Полусумма - (А+В+С+D)/2=6/2=3.