ответ: arcsin 0,99846, что соответствует углу 86,82°
Объяснение:
Основание правильной пирамиды – правильный многоугольник, боковые грани - равнобедренные треугольники, а вершина проецируется в центр окружности, описанной около основания.
Рассмотрим рисунок приложения:
Для правильного треугольника R=a/√3, где а- сторона основания. ОС=R=4√3:√3=4. Из отношению катета и гипотенузы ОС:SС=4:5 следует ∆ SОС - египетский, ⇒ высота пирамиды SО=3
Проведем высоту СН основания и апофему грани SAB. Высота СН⊥АВ. По т. о 3-х перпендикулярах SН⊥АВ.
SН и СН лежат в плоскости SСН. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости. ⇒ АВ перпендикулярна плоскости SСН. ⇒ Плоскость SСН⊥АВ.
Если плоскость перпендикулярна прямой, по которой пересекаются две другие плоскости, то она перпендикулярна и этим плоскостям.⇒ (SСН)⊥(АSВ). ⇒
Искомый угол СSН
* * *
СН=АС•sin60°=4√3•√3/2=6 ⇒
2S(СSН)=SО•СН=3•6=18.
НО=СН-СО=6-4=2.
SН=√(SО²+ОН²)=√(9+4)=√13
Проведем высоту СК к стороне SН.
2S(CSH)=СК•SН ⇒ CK=2S:SH=18/√13 Синус СSК=СК:СS= (18/√13):5=0,99846, что соответствует углу 86,82°
Вычислить нужный угол можно с тем же результатом по т. косинусов: СН²=SН²+СS²-2•SН•SС•cos(CSH) .
Объяснение:
Проведем от точки A перпендикулярный отрезок к оси Ox и назовем его AK. Аналогично сделаем и с точкой B - назовем отрезок BL.
Рассмотрим ΔOBL:
OB - гипотенуза
OL и BL - катеты
∠BOL = 45°
tg ∠BOL = (противолежащий катет) / (прилежащий катет) = BL/OL
tg 45° = 1
BL/OL = 1
BL = OL
Если посмотреть на рисунок, увидим, что:
OL = c (то есть координата x точки B)
BL = d (то есть координата y точки B)
Так как они равны, обозначим их - a.
В ΔOBL по теореме Пифагора:
OB² = OL² + BL²
OB² = a² + a²
OB = √2a² = a√2
OB = 4√2 (по условию)
a√2 = 4√2
a = 4
a = c = d = 4
Координаты точки B - (4 ; 4).
Теперь рассмотрим ΔAKO:
AO - гипотенуза
AK и OK - катеты
Если посмотрим на рисунок, увидим:
OK = m (то есть координата x точки A)
AK = 3 (то есть координата y точки A)
OA = 5 (по условию)
В ΔAKO по теореме Пифагора:
OA² = AK² + OK²
OK² = OA² - AK²
OK² = 5² - 3²
OK = √(25 - 9)
OK = √16
OK = 4
Но нужно не забыть, что точка A лежит во 2-й четверти, а значит значение x будет с минусом.
m = -4
A(3; -4)
B(4; 4)
По формуле расстояния можем узнать длину отрезка AB:
|AB| = √( (Xa - Xb)² + (Ya - Yb)² )
|AB| = √( (3 - 4)² + (-4 - 4)² )
|AB| = √( (-1)² + (-8)²
|AB| = √(1 + 64) = √65
AB = √65
ответ: arcsin 0,99846, что соответствует углу 86,82°
Объяснение:
Основание правильной пирамиды – правильный многоугольник, боковые грани - равнобедренные треугольники, а вершина проецируется в центр окружности, описанной около основания.
Рассмотрим рисунок приложения:
Для правильного треугольника R=a/√3, где а- сторона основания. ОС=R=4√3:√3=4. Из отношению катета и гипотенузы ОС:SС=4:5 следует ∆ SОС - египетский, ⇒ высота пирамиды SО=3
Проведем высоту СН основания и апофему грани SAB. Высота СН⊥АВ. По т. о 3-х перпендикулярах SН⊥АВ.
SН и СН лежат в плоскости SСН. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости. ⇒ АВ перпендикулярна плоскости SСН. ⇒ Плоскость SСН⊥АВ.
Если плоскость перпендикулярна прямой, по которой пересекаются две другие плоскости, то она перпендикулярна и этим плоскостям.⇒ (SСН)⊥(АSВ). ⇒
Искомый угол СSН
* * *
СН=АС•sin60°=4√3•√3/2=6 ⇒
2S(СSН)=SО•СН=3•6=18.
НО=СН-СО=6-4=2.
SН=√(SО²+ОН²)=√(9+4)=√13
Проведем высоту СК к стороне SН.
2S(CSH)=СК•SН ⇒ CK=2S:SH=18/√13 Синус СSК=СК:СS= (18/√13):5=0,99846, что соответствует углу 86,82°
Вычислить нужный угол можно с тем же результатом по т. косинусов: СН²=SН²+СS²-2•SН•SС•cos(CSH) .