б)В равностороннем ΔАВС , медиана АН является высотой . Тогда МН⊥ВС по т. о трех перпендикулярах и ∠АНМ-линейный угол между боковой гранью и плоскостью основания.
Катеты прямоугольного треугольника равны 20 √41 и 25√41, то по теореме Пифагора гипотенуза = √(20 √41)² + (25√41)²=√16400+25625=√42025=205 Площади треугольника равна: S = (20 √41 * 25√41) / 2 (половине произведения катетов). Площади треугольника равна: S = (205 * х) / 2 = (половина произведения стороны на высоту, проведенную к ней) где х - высота, проведенная к гипотенузе.
Составим равенство и найдем значение х: (20 √41 * 25√41) / 2 = (205 * х) / 2 (20 √41 * 25√41) = (205 * х) (умножили на 2) √400*41*√625*41=205х √16400*√25625=205х √420250000=205х 20500=205х х=20500:205 х=100 ответ: Высота равна 100.
Все рёбра треугольной пирамиды равны. Найти угол наклона:
а) Бокового ребра к плоскости основы.
б) боковой грани к площине основы/
Объяснение:
АВСМ -пирамида, пусть ребро равно х.
a)Угол наклона бокового ребра к плоскости основания это ∠МАО.
Т.к АВ=ВС=АС, то высота проецируется в центр основания О , точку пересечения медиан.Тогда АО=2/3*АН, где АН медиана, ВН=х/2 .
Из ΔАВН-прямоугольного, АН=√(х²-х²/4)=(х√3)/2. Тогда АО=( х√3)/3.
ΔАОМ-прямоугольный, cos∠МАО=АО/АМ , cos∠МАО=( х√3)/3:х=√3/3,
∠МАО=arccos(√3/3) .
ОМ=√(х²-( х√3)/3)² )=(х√6)/3
б)В равностороннем ΔАВС , медиана АН является высотой . Тогда МН⊥ВС по т. о трех перпендикулярах и ∠АНМ-линейный угол между боковой гранью и плоскостью основания.
ОН=1/3*АН , ОН=(х√3)/6.
ΔОНМ-прямоугольный ,tg∠AHM=MO/OH , tg∠AHM=2√2 , ∠AHM=arctg(2√2).
Площади треугольника равна:
S = (20 √41 * 25√41) / 2 (половине произведения катетов).
Площади треугольника равна:
S = (205 * х) / 2 = (половина произведения стороны на высоту, проведенную к ней)
где х - высота, проведенная к гипотенузе.
Составим равенство и найдем значение х:
(20 √41 * 25√41) / 2 = (205 * х) / 2
(20 √41 * 25√41) = (205 * х) (умножили на 2)
√400*41*√625*41=205х
√16400*√25625=205х
√420250000=205х
20500=205х
х=20500:205
х=100
ответ: Высота равна 100.