Площадь треугольника равна половине произведение его периметра на радиус вписанной окружности:
С другой стороны площадь можно найти как половина произведения основания на высоту:
Тогда выражение для радиуса вписанной окружности примет вид:
Основание АС нам неизвестно, поэтому введем обозначения: AC=a, AB=BC=b, и составим систему уравнений: Первое уравнение: - периметр треугольника. В качестве второго уравнения рассмотрим теорему Пифагора для прямоугольного треугольника BCD, где DC=а/2, так как BD - высота равнобедренного треугольника, а следовательно, и медиана. Второе уравнение:
Подставляем числовые данные в выражения для радиуса:
С другой стороны площадь можно найти как половина произведения основания на высоту:
Тогда выражение для радиуса вписанной окружности примет вид:
Основание АС нам неизвестно, поэтому введем обозначения: AC=a, AB=BC=b, и составим систему уравнений:
Первое уравнение: - периметр треугольника.
В качестве второго уравнения рассмотрим теорему Пифагора для прямоугольного треугольника BCD, где DC=а/2, так как BD - высота равнобедренного треугольника, а следовательно, и медиана.
Второе уравнение:
Подставляем числовые данные в выражения для радиуса:
ответ: 4/3