Дано:∆ABC-прямоугольный, угол В=60°, угол С=90°, АС=16см. найдите расстояние от точки С до прямой АВ тема: Расстояние от точки до прямой. Расстояние между параллельными прямыми
Чем больше сторона треугольника, тем меньше высота, которая к ней проведена.
Пусть высота, проведенная к стороне 20, делит ее на отрезки х и 20-х, и образует два прямоугольных треугольника, гипотенузы которых - другие стороны исходного треугольника.
Выразим квадрат высоты из 1-го треугольника по т.Пифагора:
1) Через середину гипотенузы строим прямую а, перпендикулярную основанию.
2) В плоскости, которая задается этой прямой и ребром AD проводим серединный перпендикуляр к AD.
3) Точка пересечения серединного перпендикуляра и прямой а - центр описанной сферы.
Объяснение:
Если сфера описана около данной пирамиды, то основание пирамиды вписано в окружность - сечение сферы.
Основание - прямоугольный треугольник. Центр описанной около него окружности лежит на середине гипотенузы.
Пусть Н - середина гипотенузы ВС прямоугольного треугольника BCD.
Тогда точка Н - центр окружности, описанной около ΔBCD, равноудалена от всех вершин основания.
Отрезок, соединяющий центр сечения сферы с центром сферы, перпендикулярен сечению.
Проведем через точку Н прямую а║AD. AD⊥(BCD), так как AD⊥BD и AD⊥DC, значит а⊥(BCD).
Центр сферы будет лежать на прямой а.
Любая точка прямой а равноудалена от вершин основания. Осталось найти на ней точку, удаленную от вершины А на то же расстояние, что и от остальных вершин.
Для этого в плоскости (ADH) проведем серединный перпендикуляр к ребру AD. К - середина AD, проведем КО║DН до пересечения с прямой а.
ответ: 6,6
Вариант решения.
Формула площади треугольника S=a•h/2 => h=2S:a.=>
Чем больше сторона треугольника, тем меньше высота, которая к ней проведена.
Пусть высота, проведенная к стороне 20, делит ее на отрезки х и 20-х, и образует два прямоугольных треугольника, гипотенузы которых - другие стороны исходного треугольника.
Выразим квадрат высоты из 1-го треугольника по т.Пифагора:
h²= 11²-х²
Аналогично – то же из второго треугольника:
h²=13²-(20-x)²
Приравняем эти значения
11²-х²=13²-(20-x)² Решив уравнение, получим
40х=352
х=8,8
Из меньшего треугольника по т.Пифагора
h=√(121-77,4)= 6,6 ( ед. длины)
1) Через середину гипотенузы строим прямую а, перпендикулярную основанию.
2) В плоскости, которая задается этой прямой и ребром AD проводим серединный перпендикуляр к AD.
3) Точка пересечения серединного перпендикуляра и прямой а - центр описанной сферы.
Объяснение:
Если сфера описана около данной пирамиды, то основание пирамиды вписано в окружность - сечение сферы.
Основание - прямоугольный треугольник. Центр описанной около него окружности лежит на середине гипотенузы.
Пусть Н - середина гипотенузы ВС прямоугольного треугольника BCD.
Тогда точка Н - центр окружности, описанной около ΔBCD, равноудалена от всех вершин основания.
Отрезок, соединяющий центр сечения сферы с центром сферы, перпендикулярен сечению.Проведем через точку Н прямую а║AD. AD⊥(BCD), так как AD⊥BD и AD⊥DC, значит а⊥(BCD).
Центр сферы будет лежать на прямой а.
Любая точка прямой а равноудалена от вершин основания. Осталось найти на ней точку, удаленную от вершины А на то же расстояние, что и от остальных вершин.
Для этого в плоскости (ADH) проведем серединный перпендикуляр к ребру AD. К - середина AD, проведем КО║DН до пересечения с прямой а.
О - центр сферы.