площадь трапеции равна 63cos31° + sin62° , что приблизительно равно 89.76
Объяснение:
Достроим рисунок высотами BE и CF.
Отметим, что площадь трапеции ABCD будет совпадать с площадью прямоугольника AFCG = AF*CF = (AE+EF)*BE = (7+AE)*BE
∠ABC=∠CBD=121° , ∠EBC=90° значит ∠ABE=31°
В прямоугольном треугольнике ABE
sin∠ABE=AE/AB ⇒ sin31°=AE/9 ⇒ AE=9*sin31°
cos∠ABE=BE/AB ⇒ cos31°=BE/9 ⇒ BE=9*cos31°
Значит искомая площадь = (7+AE)*BE = (7+9*sin31°)*9*cos31° =
= 63cos31° + 81sin31°cos31° = 63cos31° + sin62° ≈ 89.76
коэффициент подобия k =a₁/a₂ >0 .
(a₁/a₂)² =S₁/S₂ ⇒a₁=a₂*√(S₁/S₂) =9*√(75/300) =9*√(1/4) =9 /2 =4,5 (см).
Задание 4.
k = (a₁/a₂) =6 см / 4 см = 3/2 ; S₁+S₂ =78 ;
{ S₁+S₂ =78 ;S₁/S₂ =(3/2)² . ⇔ { (S₁/S₂ +1)*S₂ =78 ;S₁/S₂ =9/4. ⇔
{ (9/4 +1)*S₂ =78 ; S₁ =(9/4) *S₂. ⇔ { (13/4)*S₂ =78 ;S₁ =(9/4)*S₂ ⇔ { S₁ =(9/4)*24 ; S₂ =24 .⇔ { S₁ =54 (см²) ; S₂ =24 (см²).
Задание 5.
k =√ (S₁/S₂) = √ (25/100) =√ (1/4) =1/2.
a₁/a₂ =k ⇔a₁ =k*a₂ =(1/2)*6 см =3 см и b₁ =k*b₂ =(1/2)*10 =5 см.
Задание 6.
Все равносторонние треугольники подобны
k² = (a₂/a₁)² = S₁/S₂ ⇒a₂ = a₁*√(S₁/S₂) =1* √ 3.
a₂ =√ 3..
площадь трапеции равна 63cos31° + sin62° , что приблизительно равно 89.76
Объяснение:
Достроим рисунок высотами BE и CF.
Отметим, что площадь трапеции ABCD будет совпадать с площадью прямоугольника AFCG = AF*CF = (AE+EF)*BE = (7+AE)*BE
∠ABC=∠CBD=121° , ∠EBC=90° значит ∠ABE=31°
В прямоугольном треугольнике ABE
sin∠ABE=AE/AB ⇒ sin31°=AE/9 ⇒ AE=9*sin31°
cos∠ABE=BE/AB ⇒ cos31°=BE/9 ⇒ BE=9*cos31°
Значит искомая площадь = (7+AE)*BE = (7+9*sin31°)*9*cos31° =
= 63cos31° + 81sin31°cos31° = 63cos31° + sin62° ≈ 89.76