Я думаю, задание надо читать так: В основании пирамиды лежит прямоугольник со сторонОЙ 6 см.Основанием высоты пирамиды является центр описанной окружности с радиусом 5 см.Найдите объем пирамиды, если ее высота равна 9 см. Тогда решение следующее: Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды). Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см. АВ²=100-36=64⇒АВ=√64=8см. S осн.=АВ*ВС=6*8=48см² Vпир.=1/3*Sосн*h=1/3*48*9=144cм³
Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды).
Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см.
АВ²=100-36=64⇒АВ=√64=8см.
S осн.=АВ*ВС=6*8=48см²
Vпир.=1/3*Sосн*h=1/3*48*9=144cм³