1) четыре, если исключается ва
риант, когда в любой тройке точ
ки расположены на одной прямой.
2)Беконечное множество, если
хотя бы в одной тройке точки
находятся на одной прямой.
Объяснение:
По условию задачи заданы 4
точки, не лежащие в одной плос
кости. Через любые три точки,
не лежащие на одной прямой,
можно провести плоскость и
притом тоько одну. Сколько
различных таких троек опреде
ляют четыре точки?
Считаем по формуле сочетаний:
С(из 4 по3)=4!/1!3!=4
Четыре различных варианта.
ответ: четыре плоскости, если
ввести оговорку, что любые
три точки не лежат на одной
прямой.
2) Вариант, когда любые из
четырех точек не лежат в од
ной плоскости, не ислючает
возможности расположения
трех из них на одной прямой.
Если любые три точки из за
данных четырех лежат на од
ной прямой, то число плоскос
тей, проходящих через три точ
ки, лежащие на одной прямой
бесконечно.
ответ: бесконечное число
плоскостей.
Пункт В) тупоугольный треуголь
ник.
В треугольнике выполняется
соотношение: против больше
го угла лежит большая сторо
на.
Сначала проверяю теорему
Пифагора. В прямоугоьном
треугольнике большей сто
роной является гипотенуза.
18^2=6^2+13^2
324=36+169
324>205
Так как условие теоремы не
выполняется, значит, треуголь
ник не прямоугольный. То есть
против большей стороны нахо
дится угол, превосходящий пря
мой. Чтобы убедиться, что треу
гольник тупоугольный, исполь
зуем теорему косинусов.
18^2=6^2+13^2-2×6×13cosa
156cosa=36+169-324
156cosa=-119
cosa=-119/156<0
cosa<0
Угол "а" - тупой.
Треугольник тупоугольный.
1) четыре, если исключается ва
риант, когда в любой тройке точ
ки расположены на одной прямой.
2)Беконечное множество, если
хотя бы в одной тройке точки
находятся на одной прямой.
Объяснение:
По условию задачи заданы 4
точки, не лежащие в одной плос
кости. Через любые три точки,
не лежащие на одной прямой,
можно провести плоскость и
притом тоько одну. Сколько
различных таких троек опреде
ляют четыре точки?
Считаем по формуле сочетаний:
С(из 4 по3)=4!/1!3!=4
Четыре различных варианта.
ответ: четыре плоскости, если
ввести оговорку, что любые
три точки не лежат на одной
прямой.
2) Вариант, когда любые из
четырех точек не лежат в од
ной плоскости, не ислючает
возможности расположения
трех из них на одной прямой.
Если любые три точки из за
данных четырех лежат на од
ной прямой, то число плоскос
тей, проходящих через три точ
ки, лежащие на одной прямой
бесконечно.
ответ: бесконечное число
плоскостей.
Пункт В) тупоугольный треуголь
ник.
Объяснение:
В треугольнике выполняется
соотношение: против больше
го угла лежит большая сторо
на.
Сначала проверяю теорему
Пифагора. В прямоугоьном
треугольнике большей сто
роной является гипотенуза.
18^2=6^2+13^2
324=36+169
324>205
Так как условие теоремы не
выполняется, значит, треуголь
ник не прямоугольный. То есть
против большей стороны нахо
дится угол, превосходящий пря
мой. Чтобы убедиться, что треу
гольник тупоугольный, исполь
зуем теорему косинусов.
18^2=6^2+13^2-2×6×13cosa
156cosa=36+169-324
156cosa=-119
cosa=-119/156<0
cosa<0
Угол "а" - тупой.
Треугольник тупоугольный.