Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Объяснение:
1)
Рисунок а.
Проведём две высоты ВМ и СК.
ВМ=АМ, так как ∆АВМ- прямоугольный, равнобедренный
cos45°=AM/AB
√2/2=AM/8
AM=8√2/2=4√2 см.
ВМ=4√2 см.
СК=ВМ=4√2 см.
∆СКD- прямоугольный треугольник.
СD- гипотенуза.
СК и KD- катеты
По теореме Пифагора найдем
КD²=CD²-CK²=6²-(4√2)²=36-32=4см
КD=√4=2 см.
МК=AD-AM-KD=16-4√2-2=14-4√2 см.
МК=ВС=14-4√2см.
S(ABCD)=BM*(BC+AD)/2=4√2(16+14-4√2)/2=
=2√2(30-4√2)=60√2-16 см².
ответ: 60√2-16см²
2) Рисунок б
Проведём высоту СК.
cos30°=KD/CD
√3/2=KD/8
KD=8√3/2=4√3 см
sin30°=CK/CD
1/2=CK/8
CK=8/2=4см высота трапеции.
BC=AD-KD=6√3-4√3=2√3 см.
S(ABCD)=CK(BC+AD)/2=4*(2√3+6√3)/2=
=2*8√3=16√3 см²
ответ: 16√3см²