1. М - середина АВ, значит МВ = АВ/2 Р - середина МВ, значит РВ = МВ/2 = АВ/4 К - середина ВС, значит КС = ВС/2 Е - середина КС, значит ЕС = КС/2 = ВС/4 N - середина АС, значит NA = АС/2 G - середина NA, значит GA = NA/2 = AC/4 По условию PB + EC + GA = 12 АВ/4 + ВС/4 + АС/4 = 12 1/4 · (АВ + ВС + АС) = 12 АВ + ВС + АС = 12 · 4 = 48 (см)2.
Из решения первой задачи следует, что
АР = 3/4 АВ ВЕ = 3/4 ВС CG = 3/4 AC По условию AP + BE + CG = 108 3/4 АВ + 3/4 ВС + 3/4 АС = 108 3/4 · (АВ + ВС + АС) = 108 АВ + ВС + АС = 108 · 4/3 = 144 (см)
Дано :
Четырёхугольник ABCD — квадрат.
AD = 1 (ед).
BD — диагональ = √2 (ед).
Найти :
соs(∠BDA) = ?
Квадрат — четырёхугольник, всё стороны которого равны, а все углы прямые.
Рассмотрим прямоугольный ∆ABD.
Косинус острого угла прямоугольного треугольника — отношение прилежащего катета к гипотенузе.
В нашем случае катет, прилежащий к ∠BDA — AD, а гипотенуза — BD (так как лежит против прямого угла).
То есть —
cos(∠BDA) = AD/BD
cos(∠BDA) = 1 (ед) / √2 (ед)
cos(∠BDA) = 1/√2
Или —
cos(∠BDA) = (√2)/2 (одно и тоже).
(√2)/2.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
Дано :
Четырёхугольник ABCD — квадрат.
AD = 1 (ед).
BD — диагональ = √2 (ед).
Найти :
соs(∠BDA) = ?
Квадрат — четырёхугольник, всё стороны которого равны, а все углы прямые.
Рассмотрим прямоугольный ∆ABD.
Косинус острого угла прямоугольного треугольника — отношение прилежащего катета к гипотенузе.
В нашем случае катет, прилежащий к ∠BDA — AD, а гипотенуза — BD (так как лежит против прямого угла).
То есть —
cos(∠BDA) = AD/BD
cos(∠BDA) = 1 (ед) / √2 (ед)
cos(∠BDA) = 1/√2
Или —
cos(∠BDA) = (√2)/2 (одно и тоже).
(√2)/2.