предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
Что и требовалось доказать.
+3 задание:
уголN=180-(69+37)=74
уголMNP=74/2=37
угол NPM=180-(37+69)=74
уголNPK=180-(37+37)=69
угол MPN=74
уголNPK=69
уголMPN больше угла NPK, то MPменшеРК
+4 задание:
С=180-76-66=38
ЕК - биссектриса => КЕС=38
С=КЕС => треугольник КЕС равнобедренный, КС=ЕК
В треугольнике против большего угла лежит большая сторона
ответ: а) 42,5 см.
Объяснение:
Периметр треугольника по таким данным задачи зависит от того чему равно основание. То есть имеет место два варианта:
1 вариант. Если основание (АС) равно 17 см. Такой треугольник не существует. 8,5+8,5=17 ?
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0), где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
В нашем случае a+b=с, что недопустимо.
***
2 вариант. Основание АС =8,5 см.
Тогда Р=АВ+ВС+АС=2*17+8,5= 42,5 см.
+2 задание:
Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
Что и требовалось доказать.
+3 задание:
уголN=180-(69+37)=74
уголMNP=74/2=37
угол NPM=180-(37+69)=74
уголNPK=180-(37+37)=69
угол MPN=74
уголNPK=69
уголMPN больше угла NPK, то MPменшеРК
+4 задание:
С=180-76-66=38
ЕК - биссектриса => КЕС=38
С=КЕС => треугольник КЕС равнобедренный, КС=ЕК
В треугольнике против большего угла лежит большая сторона
DEK<D => DK<EK=КС DK<КС