Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°
Ок, я попробую)
17
CAO = OBD по 2 сторонам и углу между ними
18
ECB = BCA по 3 сторонам
DCA = CAB по 2 углам и стороне между ними
19 (А я уже устала)
SQ = TR т.к. PS = PT
тоже самое с углами PSM=QSM и PTM=RTM
ТА, И СТОРОНЫ SM=MT и вот по 2 сторонам и углу меду ними
20
(*Я устала писать названия треуг, поэтому где очевидно, буду просто писать просто как они равны*)
По двум сторонам и углу меду ними(одной из сторон считается вот эта палка по середине(Да я физмат))
21
По двум сторонам и углу меду ними
22(так дело пошло быстрее)
По двум углам и стороне меду ними (Если углы снаружи равны, то внутри они тоже будут равны)
23
По двум сторонам и углу меду ними (опять эта палка)
24
По двум сторонам и углу меду ними