1) Пусть дана трапеция с основаниями ВС<АД, прямыми углами А и В и диагональю АС=13 см. Пусть коэффициент пропорциональности равен х, тогда АВ=4х, СД=5х.2) Опустим из точки С на основание АД высоту СК. АВСК - прямоугольник со сторонами АВ=СК=4х см и ВС=АК.3) Треугольник СКД - прямоугольный, "египетский", т.е. со сторонами 3х,4х,5х, где КД=3х см.4) В прямоугольном тр-ке АСК по т. Пифагора квадрат стороны АК равен корню квадратному из выражения (169-16х2) {имеется ввиду "икс в квадрате"!}.5) АД=АК+КД=корень квадратный из выражения (169-16х2) + 3х.По условию АД-ВС=9, тогда корень квадратный из выражения (169-16х2) + 3х - корень квадратный из выражения (169-16х2) = 9, или 3х=9, х=36) Основания трапеции равны: ВС=корень квадратный из выражения (169-16*9)=5,АД=ВС+9=5+9=14 см; высота СК=АВ=4х=4*3=12 см. Тогда площадь трапеции вычисляем по формуле "полусумма оснований умножить на высоту", S=((5+14)*12)/2=19*6=144 квадр. см
. В треугольнике ABC угол C равен 90 градусов, BC=18, tgA= (4√65)/65. Найдите высоту CH. Тангенс находят делением катета, противолежащего углу, к катету прилежащему Сложность здесь в основном в вычислениях - числа довольно неудобные. tgA=BC:AC tgA=(4√65):65 умножим обе части отношения на √65 и получим (4*√65):65=4:√65 BC:AC=4:√65 4AC=BC*√65 АС=(18√65):4= (9√65):2 Треугольники АВС и АНС подобны по свойству высоты прямоугольного треугольника. Найдем гипотенузу АВ: АВ=√(ВС²+АС²)=√(324+81*65:4)=√(6561/4) АВ=81/2 ВС:СН=АВ:АС 18:СН=(81/2):{(9√65):2} 18 CH=9:√65 CH=18:(9:√65)=2√65 -------- [email protected]
Найдите высоту CH.
Тангенс находят делением катета, противолежащего углу, к катету прилежащему
Сложность здесь в основном в вычислениях - числа довольно неудобные.
tgA=BC:AC
tgA=(4√65):65
умножим обе части отношения на √65 и получим
(4*√65):65=4:√65
BC:AC=4:√65
4AC=BC*√65
АС=(18√65):4= (9√65):2
Треугольники АВС и АНС подобны по свойству высоты прямоугольного треугольника.
Найдем гипотенузу АВ:
АВ=√(ВС²+АС²)=√(324+81*65:4)=√(6561/4)
АВ=81/2
ВС:СН=АВ:АС
18:СН=(81/2):{(9√65):2}
18 CH=9:√65
CH=18:(9:√65)=2√65
--------
[email protected]