2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
Відповідь:V=15см³
Пояснення:
Объем такого параллелепипеда равен произведению его трех измерений.
Одно из этих измерений равно 5см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*5 =36см. Или
X+Y=4 см. (1) Х=4-Y (2).
Площадь полной поверхности параллелепипеда:
S=2*(5*X)+2*(5*Y)+2*X*Y=46 см². Или
5*X+5*Y+X*Y=23 см². Или
5(X+Y)+X*Y=23 см². Подставим значение (1):
5*4+X*Y=23 => X*Y=3. Подставим значение из (2):
Y²-4Y+3=0. Решаем это квадратное уравнение:
Y1=1 см. => X1=3см
Y2=3см. => X2 =1см.
Тогда объем параллелепипеда равен 1*3*5=15см³.
ответ: V=15см³.
Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3