Дано чотирикутник ABCD і перпендикуляр KB проведений до площини чотирикутника через вершину B. На даних малюнках намальовані кути. На якому малюнку правильно зображений лінійний кут двогранного кута між площинами AKD і ABC, якщо
a) ABCD прямокутник
b) ABCD паралелограм
Треугольник АВС- прямоугольный (угол В=90градусов), ВН - высота, АН=8, АВ=10
Найти: АС
Решение:
АС=АН+НС
1)Рассмотрим треугольник АВН, он прямоугольный, по определению высоты
Катет противолежащий углы=равен произведению гипотенузы на синус этого угла, то есть
Используя таблицу Брадиса найдем значение угла и получим, что угол ВАС=37 градусов
2) Рассматриваем треугольника АВС
угол АСВ=180-угол ВАС-угол СВА=180-37-90=53градуса
3)рассмотрим треугольник ВНС
Катет противолежащий углу равен произведению другого катета на тангенс этого угла, то есть
4)AC=AH+HC=8+4,5=12,5
ответ: АС=12,5
Биссектриса проведённая к основанию равнобедренного тр-ка c боковой сторотой b = 10, является и медианой и высотой h=8.
Найдём основание а по теореме Пифагора:
(0,5а)² = 10² - 8² = 100 - 64 = 36
0,25а² = 36
а² = 144
а = 12(см)
Найдём площадь тр-ка S и полупериметр р
S = 0,5a·h = 0,5·12·8 = 48(см²)
р = (12 + 2·10):2 = 32:2 = 16(см)
Радиус описанной окружности
R = а·b·b/(4S) = 12·10·10/(4·48) = 1200:192 = 6,25(см)
Радиус писанной окружности
r = S/p = 48/16 = 3(см)
ответ: R = 6,25 см, r = 3см