ответ:Имеется есть 10 квадратных карточек, стороны которых равны соответственно 10 единиц, 9, 8 и т.д. до 1 единицы. Карточки с четными сторонами, черные, а остальные карточки белые. Положим на стол самую большую карточку (это черная карточка со стороной 10 единиц). Потом на нее (так, чтобы она лежала в левом верхнем углу черной карточки) положим белую карточку со стороной 9 единиц (см. рис. а). Затем на нее (в левый нижний угол) положим черную карточку со стороной 8 (рис. б). На нее (в правый нижний угол) кладем следующую по размеру карточку. Продолжим этот процесс далее, причем положения карточек как бы “закручиваются’’ внутрь против часовой стрелки. Вопрос: какой рисунок получится после выкладывания последней карточки?
Немного отвлечемся от задачек, чтобы вы сразу не бросались читать решения, а немного сами подумали над ними. Впрочем, как всегда ;) .
Стивен Барр — американский писатель и любитель математики. К математике Барр обратился довольно поздно. Он заинтересовался задачами моделирования сложных поверхностей, что и привело к тому, что он начал ей заниматься. Его интерес подерживал Мартин Гарднер. В США Барр издал три книги, которые имели довольно большой успех, возможно, даже больший, чем его художественные произведения.
А теперь приведу решения задач.
1. Произведение в знаменателе — это разность квадратов:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
ответ:Имеется есть 10 квадратных карточек, стороны которых равны соответственно 10 единиц, 9, 8 и т.д. до 1 единицы. Карточки с четными сторонами, черные, а остальные карточки белые. Положим на стол самую большую карточку (это черная карточка со стороной 10 единиц). Потом на нее (так, чтобы она лежала в левом верхнем углу черной карточки) положим белую карточку со стороной 9 единиц (см. рис. а). Затем на нее (в левый нижний угол) положим черную карточку со стороной 8 (рис. б). На нее (в правый нижний угол) кладем следующую по размеру карточку. Продолжим этот процесс далее, причем положения карточек как бы “закручиваются’’ внутрь против часовой стрелки. Вопрос: какой рисунок получится после выкладывания последней карточки?
Немного отвлечемся от задачек, чтобы вы сразу не бросались читать решения, а немного сами подумали над ними. Впрочем, как всегда ;) .
Стивен Барр — американский писатель и любитель математики. К математике Барр обратился довольно поздно. Он заинтересовался задачами моделирования сложных поверхностей, что и привело к тому, что он начал ей заниматься. Его интерес подерживал Мартин Гарднер. В США Барр издал три книги, которые имели довольно большой успех, возможно, даже больший, чем его художественные произведения.
А теперь приведу решения задач.
1. Произведение в знаменателе — это разность квадратов:
\[1234567890\cdot 1234567892=(1234567891-1)\cdot(1234567891+1)=1234567891^2-1,\]
откуда знаменатель сразу находится — он равен 1. Соответственно, вся дробь равна числителю, и это 1234567890.
2. Получится черный квадрат, на котором расположена белая спираль, состоящая из квадратиков, которая закручивается внутрь по часовой стрелке:
Объяснение:
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.