Рассмотрим треугольники АВС и MNC. Они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - CN : CB = CM : CA = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол С - общий для треугольников. У подобных треугольников соответственные углы ВАС и NMC равны. Они являются также соответственными углами при пересечении двух прямых АВ и MN секущей АС. Используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Значит, AB II MN.
а)Сумма углов четырехугольника АВДС равна 360 градусов. Поэтому, чтобы найти угол АСД надо из 360 отнять сумму заданных углов. Т.е. угол ACD= 360-(43+45+ 137)=360-225=135 градусов. б)Угол BDC =45 градусам, ABD=137 градусам, это внутренние односторонние углы при прямых АВ и DC и секущей BD. Для того, чтобы прямые АВ и DC были параллельны, надо чтобы сумма указанных углов была 180 градусов, а у нас 45+ 137= 182, т.е. эти прямые не параллельны, значит, они имеют общую точку и, если АВ и DC продолжить, то они пересекутся.
- CN : CB = CM : CA = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4);
- угол С - общий для треугольников.
У подобных треугольников соответственные углы ВАС и NMC равны. Они являются также соответственными углами при пересечении двух прямых АВ и MN секущей АС. Используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Значит, AB II MN.
а)Сумма углов четырехугольника АВДС равна 360 градусов. Поэтому, чтобы найти угол АСД надо из 360 отнять сумму заданных углов. Т.е. угол ACD= 360-(43+45+ 137)=360-225=135 градусов. б)Угол BDC =45 градусам, ABD=137 градусам, это внутренние односторонние углы при прямых АВ и DC и секущей BD. Для того, чтобы прямые АВ и DC были параллельны, надо чтобы сумма указанных углов была 180 градусов, а у нас 45+ 137= 182, т.е. эти прямые не параллельны, значит, они имеют общую точку и, если АВ и DC продолжить, то они пересекутся.