Якщо пряма не паралельна площині , то вони перетинаються в одній точці. Щоб знайти точку перетину необхідно розв’язати систему їх рівнянь
Це зручніше зробити, якщо рівняння записати в параметричній формі
і підставити ці вирази в рівняння , тоді одержимо
За знайденим значенням із (34) знаходимо координати точки перетину.
Приклади
1.Знайти точку перетину прямої з площиною .
Розв’язання.Запишемо рівняння прямої в параметричному вигляді: Підставимо вирази для x, y, z в загальне рівняння площини
2.Знайти точку N симетричну з точкою М(-1,4,2) відносно площини
Розв’язання.Спочатку складемо рівняння прямої, яка проходить через точку М(-1,4,2) перпендикулярно до площини. За напрямний вектор можна взяти нормальний вектор даної площини (див. умову (33) попереднього параграфа ). Отже, маємо Знайдемо точку перетину знайденої прямої з площиною. З рівняння прямої виражаємо і підставляємо у рівняння площини точка перетину прямої і площини. Ця точка є серединою між двома симетричними відносно площини точками М(-1,4,2) і N(XN, YN, ZN), тобто
Объяснение:
Якщо пряма не паралельна площині , то вони перетинаються в одній точці. Щоб знайти точку перетину необхідно розв’язати систему їх рівнянь
Це зручніше зробити, якщо рівняння записати в параметричній формі
і підставити ці вирази в рівняння , тоді одержимо
За знайденим значенням із (34) знаходимо координати точки перетину.
Приклади
1.Знайти точку перетину прямої з площиною .
Розв’язання.Запишемо рівняння прямої в параметричному вигляді: Підставимо вирази для x, y, z в загальне рівняння площини
2.Знайти точку N симетричну з точкою М(-1,4,2) відносно площини
Розв’язання.Спочатку складемо рівняння прямої, яка проходить через точку М(-1,4,2) перпендикулярно до площини. За напрямний вектор можна взяти нормальний вектор даної площини (див. умову (33) попереднього параграфа ). Отже, маємо Знайдемо точку перетину знайденої прямої з площиною. З рівняння прямої виражаємо і підставляємо у рівняння площини точка перетину прямої і площини. Ця точка є серединою між двома симетричними відносно площини точками М(-1,4,2) і N(XN, YN, ZN), тобто
Хз что ето
1. 32 см.
2. 53°, 53°, 127°,127°
3. Медиана равна 13 см
4. а=8 см, в=12 см
Объяснение:
1. Периметр - сумма сторон. Противолежащие стороны параллелограмма равны. Значит периметр равен 5+5+11+11=32 см
2. В ромбе противолежащие углы равны, а сумма всех углов 360°
Значит сумма двух углов 53+53=106°
Сумма двух других углов равна 360-106=254°. ТОгда один угол равен 127°
3. ΔАВС - прямоугольный, АВ=12, ВС=10, АК-медиана, проведенная к ВС. ВК=ВС=5 см.
ΔАВК - прямоугольный, АК - гипотенуза. АК²=АВ²+КВ²=144+25=169
АК=13 см
4. а и в стороны прямоугольника
Площадь равна а*в=96 см. а=96/в
а:в=2:3, а=2в/3
2в/3=96/в
2в²=288
в²=144
в=12
а=8