Поскольку решать будем без чертежа, то рассмотрим осевое сечение конуса, т.е. треугольник АВС, где АВ и АС образующие, угол В = 120. ВН - высота. Проведем прямую параллельную основанию конуса, по которой плоскость пересечет конус. Точки пересечения этой прямой собразующими и высотой М, К, О. М лежит на АВ, К на ВС, О на ВН. ВО : ОН = 2 : 3. Образующая АВ = 12 см Треуг. АВС прямоугольный и равнобедренный, угол А = (180 - 120) : 2 = 30. Напротив угла 30 градусов лежит катет вдвое меньше гипотенузы, т.е. ВН = 12 : 2 = 6 см. Так как ВО : ОН = 2 : 3, то ВН состоит из 5 частей. ВО = 6 : 5 * 2 = 2,4 см Рассмотрим треуг. ВОМ, радиус которого нам нужен для вычисления площади сечения. МО - это и есть искомый радиус. Поскольку МО параллельно АН, то угол ВМО = ВАН = 30 как соответствующие углы при параллельных прямых АН и МО и секущей АВ. Тогда МВ = 2 * 2,4 = 4,8 см. МО^2 = MB^2 - BO^2 MO^2 = 4,8^2 - 2,4^2 = 23,04 - 5,76 = 17,28 см^2 MO = R радиусу сечения. Тогда площадь сечения: S = ПR^2 = 17,28*П ответ: 17,28*П
Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
Проведем прямую параллельную основанию конуса, по которой плоскость пересечет конус. Точки пересечения этой прямой собразующими и высотой М, К, О. М лежит на АВ, К на ВС, О на ВН.
ВО : ОН = 2 : 3.
Образующая АВ = 12 см
Треуг. АВС прямоугольный и равнобедренный, угол А = (180 - 120) : 2 = 30.
Напротив угла 30 градусов лежит катет вдвое меньше гипотенузы, т.е. ВН = 12 : 2 = 6 см.
Так как ВО : ОН = 2 : 3, то ВН состоит из 5 частей.
ВО = 6 : 5 * 2 = 2,4 см
Рассмотрим треуг. ВОМ, радиус которого нам нужен для вычисления площади сечения. МО - это и есть искомый радиус.
Поскольку МО параллельно АН, то угол ВМО = ВАН = 30 как соответствующие углы при параллельных прямых АН и МО и секущей АВ.
Тогда МВ = 2 * 2,4 = 4,8 см.
МО^2 = MB^2 - BO^2
MO^2 = 4,8^2 - 2,4^2 = 23,04 - 5,76 = 17,28 см^2
MO = R радиусу сечения.
Тогда площадь сечения:
S = ПR^2 = 17,28*П
ответ: 17,28*П
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.