Объяснение:"Углом между указанными плоскостями MDC и АВС является угол, стороны которого – лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру".
Если MA=BD=CP=KT, то AB=DC=PK=TM, т.к. все стороны квадрата равны по определению.
Соединив точки A,D,P и T получим прямоугольные треугольники ABD, DCP, PKT и TMA с равными сторонами, т.е. и равные гипотенузы AD=DP=PT=TA, а именно равные стороны фигуры ADPT.
Построив две прямые, соединив точки D и T, а так же A и P, получим две прямоугольные трапеции ABCP и AMKP, с равными основаниями, вершинами и одной стороной, то и вторые стороны этих трапеций будут равны DT=AP.
Имея равные стороны AD=DP=PT=TA и равные диагонали DT=AP, получим квадрат ADPT.
ответ: arctg(√2tgα).
Объяснение:"Углом между указанными плоскостями MDC и АВС является угол, стороны которого – лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру".
1) ΔДОС: ОД=ОС по свойству диагоналей квадрата,
ОЕ- медиана по условию ⇒ОЕ- высота и ∠ОЕС=90°.
2) ΔОЕС: ∠ОЕС=90°, пусть ДС=а, тогда ОЕ=ЕС=а/2,
ОС²=(а/2)²+(а/2)²=а²/4 + а²/4= 2а²/4= а²/2;
ОC=а:√2= (а√2) :2.
ОМ:ОС=tgα ⇒ ОМ=ОС*tgα= (а√2) :2 * tgα= (а√2*tgα) :2.
3) ΔОМЕ: ОМ⊥ пл.АВС, ОЕ⊂пл.АВС ⇒ ОМ⊥ОЕ.
tg∠ОЕМ = ОМ:ОЕ = (а√2*tgα):2 :а/2= (а√2*tgα):а= √2tgα;
4) ОЕ⊂пл.АВС, ОЕ⊥ДС, МЕ- наклонная к пл.АВС,
ОЕ- проекция МЕ на пл.АВС ⇒
⇒ по теореме о трёх перпендикулярах МЕ ⊥ ДС.
пл.АВС ∩ пл.ДМС= ДС, МЕ ⊂ пл.ДМС и МЕ⊥ДС,
ОЕ ⊂ пл.АВС и ОЕ⊥пл. АВС ,
значит ∠(МДС;АВС)=∠ОЕМ= arctg(√2tgα).
ADPT - квадрат
Объяснение:
Если MA=BD=CP=KT, то AB=DC=PK=TM, т.к. все стороны квадрата равны по определению.
Соединив точки A,D,P и T получим прямоугольные треугольники ABD, DCP, PKT и TMA с равными сторонами, т.е. и равные гипотенузы AD=DP=PT=TA, а именно равные стороны фигуры ADPT.
Построив две прямые, соединив точки D и T, а так же A и P, получим две прямоугольные трапеции ABCP и AMKP, с равными основаниями, вершинами и одной стороной, то и вторые стороны этих трапеций будут равны DT=AP.
Имея равные стороны AD=DP=PT=TA и равные диагонали DT=AP, получим квадрат ADPT.
ч.т.д.